[1] 和娴越, 赵洋毅, 王克勤, 等. 中亚热带典型森林生态系统水源涵养功能. 东北林业大学学报, 2023, 51(8): 77-82 [2] Hayat M, Xiang J, Yan CH, et al. Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China. Agricultural and Forest Meteorology, 2022, 312: 108715 [3] Granier A, Bobay V, Gash JHC, et al. Vapour flux density and transpiration rate comparisons in a stand of Ma-ritime pine (Pinus pinaster Ait.) in Les Landes forest. Agricultural and Forest Meteorology, 1990, 51: 309-319 [4] 张瑞婷, 杨金艳, 阮宏华. 等. 树干液流对环境变化响应研究的整合分析. 南京林业大学学报: 自然科学版, 2022, 46(5): 113-120 [5] Barbeta A, Ogaya R, Peñuelas J, et al. Comparative study of diurnal and nocturnal sap flow of Quercus ilex and Phillyrea latifolia in a Mediterranean holm oak forest in Prades (Catalonia, NE Spain). Trees-Structure and Function, 2012, 26: 1651-1659 [6] Rawson HM, Clarke JM. Nocturnal transpiration in wheat. Functional Plant Biology, 1988, 15: 397-406 [7] Brito C, Dinis L, Ferreira H, et al. The role of nighttime water balance on Olea europaea plants subjected to contrasting water regimes. Journal of Plant Physiology, 2018, 226: 56-63 [8] Hayat M, Yan CH, Xiang J, et al. Multiple-temporal scale variations in nighttime sap flow response to environmental factors in Ficus concinna over a subtropical megacity, Southern China. Forests, 2022, 13: 1059 [9] 莫康乐, 陈立欣, 周洁, 等. 永定河沿河沙地杨树人工林蒸腾耗水特征及其环境响应. 生态学报, 2014, 34(20): 5812-5822 [10] 刘华, 佘春燕, 白志强, 等. 不同径级的西伯利亚红松树干液流及蒸腾耗水特征的差异. 西北植物学报, 2016, 36(2): 390-397 [11] 唐子舒, 王根绪, 胡兆永, 等. 贡嘎山不同径级峨眉冷杉树干液流特征及其影响因素. 山地学报, 2022, 40(2): 220-234 [12] 黄德卫, 张德强, 周国逸, 等. 鼎湖山针阔叶混交林优势种树干液流特征及其与环境因子的关系. 应用生态学报, 2012, 23(5): 1159-1166 [13] 陈宝强, 张建军, 张艳婷, 等. 晋西黄土区辽东栎和山杨树干液流对环境因子的响应. 应用生态学报, 2016, 27(3): 746-754 [14] 常乐, 刘美君, 吕金林, 等. 树干液流对蒸腾驱动因子响应的土壤水分限制与非限制特征. 应用生态学报, 2024, 35(4): 1064-1072 [15] Zha TS, Qian D, Jia X, et al. Soil moisture control of sap-flow response to biophysical factors in a desert-shrub species, Artemisia ordosica. Biogeosciences, 2017, 14: 4533-4544 [16] Tie Q, Hu H, Tian F, et al. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agricultural and Forest Meteo-rology, 2017, 240-241: 46-57 [17] 彭苓, 韩磊, 韩永贵, 等. 宁夏河东沙区丝棉木树干液流昼夜变化及其受气象因子的影响. 东北林业大学学报, 2022, 50(8): 28-32 [18] 孔喆, 陈胜楠, 律江, 等. 欧美杨单株液流昼夜组成及其影响因素分析. 林业科学, 2020, 56(3): 8-20 [19] 竹磊, 徐军亮, 章异平, 等. 河南洛阳马尾松树干液流昼夜变化特征及其影响因子分析. 南京林业大学学报: 自然科学版, 2023, 47(1): 92-100 [20] Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physio-logy, 1987, 3: 309-320 [21] Daley MJ, Phillips NG. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 2006, 26: 411-419 [22] 徐先英, 孙保平, 丁国栋, 等. 干旱荒漠区典型固沙灌木液流动态变化及其对环境因子的响应. 生态学报, 2008, 28(3): 895-905 [23] 臧春鑫, 杨劼, 袁劼, 等. 黄土丘陵沟壑区中间锦鸡儿整株丛树干液流特征与环境因子的关系. 生态学杂志, 2010, 29(3): 420-426 [24] Sperry JS, Sullivan JEM. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 1992, 100: 605-613 [25] Phillips NG, Lewis JD, Logan BA, et al. Inter-and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 2010, 30: 586-596 [26] Baldocchi DD, Wilson KB, Gu L, et al. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broadleaved deciduous forest: An assessment with the biophysical model CANOAK. Tree Physio-logy, 2002, 22: 1065-1077 [27] 倪广艳, 赵平, 朱丽薇, 等. 荷木整树蒸腾对干湿季土壤水分的水力响应. 生态学报, 2015, 35(3): 652-662 [28] 杜太生, 康绍忠, 张宝忠, 等. 石羊河流域干旱荒漠绿洲区不同滴灌模式下葡萄茎液流变化及其与环境因子的关系. 应用生态学报, 2008, 19(2): 299-305 [29] 赵平, 饶兴权, 马玲, 等. 马占相思(Acacia man-gium)树干液流密度和整树蒸腾的个体差异. 生态学报, 2006, 26(12): 4050-4058 [30] Jiménez MS, Cermák J, Kucera J, et al. Laurel forests in Tenerife, Canary Islands: The annual course of sap flow in Laurus trees and stand. Journal of Hydrology, 1996, 183: 307-321 [31] 陈胜楠, 孔喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子. 生态学报, 2020, 40(4): 1269-1280 [32] Zeppel MJB, Lewis JD, Phillips NG, et al. Consequences of nocturnal water loss: A synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 2014, 34: 1047-1055 [33] 司建华, 冯起, 鱼腾飞, 等. 植物夜间蒸腾及其生态水文效应研究进展. 水科学进展, 2014, 25(6): 907-914 [34] 周翠鸣, 赵平, 倪广艳, 等. 广州地区荷木夜间树干液流补水的影响因子及其对蒸腾的贡献. 应用生态学报, 2012, 23(7): 1751-1757 [35] 尤海舟, 王超, 赵广智, 等. 华北平原欧美107杨单株夜间液流分配特征及其环境响应. 生态环境学报, 2023, 32(2): 256-263 [36] Ford CR, Goranson CE, Mitchell RJ, et al. Diurnal and seasonal variability in the radial distribution of sap flow: Predicting total stem flow in Pinus taeda trees. Tree Physiology, 2004, 24: 941-950 [37] Fisher JB, Baldocchi DD, Misson L, et al. What the towers don’t see at night: Nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 2007, 27: 597-610 [38] 王艳兵, 德永军, 熊伟, 等. 华北落叶松夜间树干液流特征及生长季补水格局. 生态学报, 2013, 33(5): 1375-1385 [39] Spicer R, Gartner BL. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees, 2001, 15: 222-229 |