[1] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[EB/OL]. (2021-12-21)[2023-10-12]. https://www.ipcc.ch/report/ar6/wg1/ [2] 夏建阳, 鲁芮伶, 朱辰, 等. 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 2020, 44(5): 494-514 [3] Raich JW, Potter CS, Bhagawati D. Interannual variability in global soil respiration, 1980-1994. Global Change Biology, 2002, 8: 800-812 [4] 姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子. 生态学杂志, 2007, 26(2): 278-285 [5] Ma WW, Li G, Wu JH, et al. Response of soil labile organic carbon fractions and carbon-cycle enzyme activities to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau. Geoderma, 2020, 377: 114565 [6] Li CF, Zhang C, Luo GP, et al. Carbon stock and its responses to climate change in Central Asia. Global Change Biology, 2015, 21: 1951-1967 [7] Eldridge DJ, Greene R. Microbiotic soil crusts: A review of their roles in soil and ecological processes in the rangelands of Australia. Australian Journal of Soil Research, 1994, 32: 389-415 [8] Lan SB, Ouyang H, Wu L, et al. Biological soil crust community types differ in photosynthetic pigment composition, fluorescence and carbon fixation in Shapotou region of China. Applied Soil Ecology, 2017, 111: 9-16 [9] 张雨虹, 张韶阳, 张树煇, 等. 毛乌素沙地苔藓结皮对沙化土壤性质和细菌群落的影响. 土壤学报, 2021, 58(6): 1585-1597 [10] 张冠华, 易亮, 丁文峰, 等. 三峡库区生物结皮对土壤分离过程的影响及其机制. 土壤, 2021, 53(3): 610-619 [11] 魏雯琳, 邱晓杰, 王文瑞, 等. 季节增温对内蒙古半干旱草地土壤化学计量特征的影响. 草业科学, 2023, 40(8): 1988-1999 [12] 邓旭哲, 韩晨, 薛利祥, 等. 增温施肥对稻麦农田土壤有机碳及其活性组分的影响. 环境科学, 2023, 44(3): 1553-1561 [13] 向元彬, 周世兴, 肖永翔, 等. 模拟氮沉降和降雨量改变对华西雨屏区常绿阔叶林土壤有机碳的影响. 生态学报, 2017, 37(14): 4686-4695 [14] 王磊, 高阳, 沈振. 气候变化背景下农田土壤碳储量评估方法研究进展. 农业工程学报, 2024, 40(16): 1-11 [15] 李冰, 陈林, 庞丹波, 等. 基于文献计量分析近11年土壤有机碳的研究进展. 中国农业大学学报, 2024, 29(4): 138-151 [16] 刘荔昀, 鲁瑞洁, 丁之勇, 等. 黄土高原气候变化特征及原因分析. 地球环境学报, 2021, 12(6): 615-631 [17] 齐月, 赵鸿, 雷俊, 等. 黄土高原半干旱区马铃薯产量对气候变化的响应. 干旱地区农业研究, 2023, 41(1): 193-200, 220 [18] 贾瑞玲, 赵小琴, 刘军秀, 等. 黄土高原半干旱区气候变化对荞麦生产的影响. 中国农业气象, 2023, 44(9): 782-794 [19] 杨凯. 黄土丘陵区生物结皮盖度影响坡面产流产沙的动力机制. 博士论文. 杨凌: 西北农林科技大学, 2022 [20] 窦韦强, 田乐乐, 肖波, 等. 黄土高原藓结皮土壤呼吸速率对降雨量变化的响应. 生态学报, 2022, 42(5): 1703-1715 [21] Dou WQ, Xiao Bo, Daniel R, et al. Biocrusts enhance soil organic carbon stability and regulate the fate of new-input carbon in semiarid desert ecosystems. Science of the Total Environment, 2024, 918: 170794 [22] 叶超, 张昀, 燕香梅, 等. 秸秆还田方式和数量对棕壤有机碳活性的影响. 四川农业大学学报, 2019, 37(3): 343-351 [23] 周虹, 刘雲祥. 高寒沙区土壤结皮对浅层土壤理化性质的影响. 干旱区资源与环境, 2022, 36(8): 154-160 [24] Li SL, Bowker MA, Xiao B. Biocrust impacts on dryland soil water balance: A path toward the whole picture. Global Change Biology, 2022, 28: 6462-6481 [25] Giora JK, Li XR, Jia RL, et al. Assessment of carbon gains from biocrusts inhabiting a dunefield in the Negev Desert. Geoderma, 2015, 253-254: 102-110 [26] Grote EE, Belnap J, Housman DC, et al. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: Implications for global change. Global Change Biology, 2010, 16: 2763-2774 [27] Sun HF, Li XL, Jin LQ, et al. Effects of biological soil crusts on soil labile organic carbon of patchy alpine meadows in the Source Zone of the Yellow River, West China. Catena, 2023, 220: 106715 [28] Zhang NH, Ye X, Gao Y, et al. Environment and agricultural practices regulate enhanced biochar-induced soil carbon pools and crop yield: A meta-analysis. Science of the Total Environment, 2023, 905: 167290 [29] Worrall F, Burt T, Shedden R. Long term records of riverine dissolved organic matter. Biogeochemistry, 2003, 64: 165-178 [30] Li SC, Tang SM, Chen HY, et al. Soil nitrogen availability drives the response of soil microbial biomass to warming. Science of the Total Environment, 2024, 917: 170505 [31] Shi ZH, Yan FL, Li L, et al. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena, 2010, 81: 240-248 [32] Huang XL, Jia ZX, Guo JJ, et al. Ten-year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Camisol. Geoderma, 2019, 355: 113880 [33] Zhang BC, Zhou XB, Zhang YM. Responses of micro-bial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang. Journal of Arid Land, 2015, 7: 101-109 [34] Shi ZH, Yan FL, Li L, et al. Interrill erosion from disturbed and undisturbed samples in relation to topsoil aggregate stability in red soils from subtropical China. Catena, 2010, 81: 240-248 [35] Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: A review of their role in dryland soil processes. Journal of Arid Environments, 2011, 75: 91-97 [36] Xiao B, Bowker MA. Moss-biocrusts strongly decrease soil surface albedo, altering land-surface energy balance in a dryland ecosystem. Science of the Total Environment, 2020, 741: 140425 [37] Lange OL, Giora JK, Budel B, et al. Taxonomic composition and photosynthetic characteristics of the ‘biological soil crusts’ covering sand dunes in the western Negev Desert. Functional Ecology, 1992, 6: 519-527 [38] Xiao B, Veste M. Moss-dominated biocrusts increase soil microbial abundance and community diversity and improve soil fertility in semi-arid climates on the Loess Plateau of China. Applied Soil Ecology, 2017, 117: 165-177 [39] Zhou XQ, Chen CR, Wang YF, et al. Warming rather than increased precipitation increases soil recalcitrant organic carbon in a semiarid grassland after 6 years of treatments. PLoS One, 2013, 8(1): e53761 [40] 吴雪梅, 杨雪岩, 林媛媛, 等. 刺槐和油松枯落叶腐殖质化对气候温湿变化的响应. 草地学报, 2021, 29(8): 1738-1747 [41] 钟泽坤. 增温和降雨改变对黄土丘陵区撂荒草地土壤碳循环关键过程的影响. 博士论文. 杨凌: 西北农林科技大学, 2022 [42] Zhou WP, Shen WJ, Li YE, et al. Interactive effects of temperature and moisture on composition of the soil microbial community. European Journal of Soil Science, 2017, 68: 909-918 [43] 田畅. 沙地生物结皮层土壤微生物和有机碳对短期增温及氮添加的响应. 博士论文. 杨凌: 中国科学院教育部水土保持与生态环境研究中心, 2023 [44] 朱飙, 张强, 李春华, 等. 我国干旱半干旱区气候变化特征及其对干湿波动的影响. 大气科学学报, 2023, 46(1): 42-54 [45] Guo XW, Xiao JJ, Yang YH, et al. Responses of soil organic carbon to climate extremes under warming across global biomes. Nature Climate Change, 2024, 14: 98-105 [46] Guan C, Li XR, Zhang P, et al. Effect of global warming on soil respiration and cumulative carbon release in biocrust-dominated areas in the Tengger Desert, northern China. Journal of Soils and Sediments, 2019, 19: 1161-1170 [47] 王一贺, 赵允格, 李林, 等. 黄土高原不同降雨量带退耕地植被-生物结皮的分布格局. 生态学报, 2016, 36(2): 377-386 [48] 王闪闪, 赵允格, 李彬彬, 等. 混合生物结皮对土壤养分的影响与群落结构之关联: 以黄土丘陵区的生物结皮为例. 生态学报, 2023, 43(3): 1247-1256 |