[1] Zhang M, Xie P, Xu J, et al. Spatiotemporal variations of internal P-loading and the related mechanisms in the large shallow Lake Chaohu. Science in China Series D: Earth sciences, 2006, 49(Suppl.1): 72-81 [2] 田茂琦, 陈光杰, 孔令阳, 等. 昆明小型城市湖泊叶绿素a浓度与硅藻群落的时空分布及主控因子. 应用生态学报, 2023, 34 (9): 2545-2554 [3] 袁昭瑞, 马腾, 陈国元, 等. 环境浓度微囊藻毒素-LR对菖蒲无机氮吸收特性的影响. 生态毒理学报, 2023, 18(2): 168-175 [4] 邱雨, 马增岭, 张子怡, 等. 水生态系统中微囊藻毒素的分布及其生态毒理效应研究进展. 应用生态学报, 2023, 34(1): 277-288 [5] 陈国元, 廖腾芳, 李青松. 微囊藻毒素-LR慢性暴露对水雍菜光合生理的影响. 西北农林科技大学学报:自然科学版, 2021, 49(9): 129-136, 143 [6] Hu XB, Zhang RF, Ye JY, et al. Monitoring and research of microcystins and environmental factors in a typical artificial freshwater aquaculture pond. Environmental Science and Pollution Research, 2018, 25: 5921-5933 [7] Chen GY, Zheng ZH, Bai MX, et al. Chronic effects of microcystin-LR at environmental relevant concentrations on photosynthesis of Typha angustifolia Linn. Ecotoxico-logy, 2020, 29: 514-523 [8] Wang NY, Wang C. Effects of microcystin-LR on the tissue growth and physiological responses of the aquatic plant Iris pseudacorus L. Aquatic Toxicology, 2018, 200: 197-205 [9] Hajari E, Snyman SJ, Watt MP. Inorganic nitrogen uptake kinetics of sugarcane (Saccharum spp.) varieties under in vitro conditions with varying N supply. Plant Cell, Tissue and Organ Culture, 2014, 117: 361-371 [10] 彭婉婷, 邹琳, 段维波, 等. 多种湿地植物组合对污水中氮和磷的去除效果. 环境科学学报, 2012, 32(3): 612-617 [11] 陈国元, 陈颖, 白铭贤, 等. NH4+-N和低浓度MC-LR对梭鱼草叶片谷胱甘肽系统的影响. 安全与环境学报, 2018, 18(5): 1962-1969 [12] Classen N, Barber SA. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology, 1974, 54: 564-568 [13] He J, Jin Y, Turner NC, et al. Phosphorus application increases root growth, improves daily water use during the reproductive stage, and increases grain yield in soybean subjected to water shortage. Environmental and Experimental Botany, 2019, 166: 103816 [14] Luo HH, Zhang YL, Zhang WF. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 2016, 54: 65-73 [15] Machado J, Azevedo J, Freitas M, et al. Analysis of the use of microcystin-contaminated water in the growth and nutritional quality of the root-vegetable, Daucus carota. Environmental Science and Pollution Research, 2017, 24: 752-764 [16] Freitas M, Azevedo J, Pinto E, et al. Effects of microcystin-LR, cylindrospermopsin and a microcystin-LR/cylindrospermopsin mixture on growth, oxidative stress and mineral content in lettuce plants (Lactuca sativa L.). Ecotoxicology and Environmental Safety, 2015, 116: 59-67 [17] Liang CJ, Wang WM. Response and recovery of rice (Oryza sativa) seedlings to irrigation with microcystin-contaminated water. Environmental Earth Sciences, 2015, 73: 4573-4580 [18] 尹黎燕, 黄家权, 李敦海, 等. 微囊藻毒素对沉水植物苦草生长发育的影响. 水生生物学报, 2004, 28(2): 147-150 [19] Bayle V, Arrighi JF, Creff A, et al. Arabidopsis thaliana high affinity phosphate transporters exhibit multiple levels of posttranslational regulation. The Plant Cell, 2011, 23: 1523-1535 [20] Yang ZL, Yang J, Wang Y, et al. Protein phospohatase 95 regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice. The Plant Cell, 2020, 32: 740-757 [21] 王余, 朱雯倩, 王娓敏, 等. 微囊藻毒素对水稻幼苗生长与叶绿素荧光的影响. 环境科学学报, 2015, 35(2): 602-607 [22] Chen GY, Li QS, Bai MX, et al. Nitrogen metabolism in Acorus calamus L. leaves induced changes in response to microcystin-LR at environmentally relevant concentrations. Bulletin of Environmental Contamination and Toxicology, 2019, 103: 280-285 [23] Al Rubaye OAM, Yetisir H, Ulas F, et al. Enhancing salt stress tolerance of different pepper (Capsicum annuum L.) inbred line genotypes by rootstock with vigorous root system. Gesunde Pflanzen, 2021, 73: 375-389 [24] 林文雄, 石秋梅, 郭玉春, 等. 水稻磷效率差异的生理生化特性. 应用与环境生物学报, 2003, 9(6): 578-583 [25] Bourne RM. Net phosphate transport in phosphate-starved Candida utilis: Relationship with pH and potassium. Biochimica et Biophysica Acta, 1991, 1067: 81-88 [26] Barkla BJ, Pantoja O. Physiology of ion transport across the tonoplast of higher plants. Annual Review of Plant Physiology & Plant Molecular Biology, 1996, 47: 159-184 [27] Song KM, Jiao XZ, Li L, et al. The relationship between phosphate uptake and changes in plasmalemma H+-ATPase activities from the roots of tomato seedlings during phosphate starvation. Acta Phytophysiologica Sinica, 2001, 27: 87-93 [28] Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate. Aquatic Botany, 2009, 90: 67-73 [29] Nishikawa T, Tarutani K, Yamamoto T. Nitrate and phosphate uptake kinetics of the harmful diatom Coscinodiscus wailesii, a causative organism in the bleaching of aquacultured Porphyra thalli. Harmful Algae, 2010, 9: 563-567 [30] Kibria MG, Maniruzzaman M, Islam M, et al. Effects of soil-applied lead on growth and partitioning of ion concentration in Spinacea oleracea L. tissues. Soil and Environment, 2010, 29: 1-6 [31] Tamagno S, Balboa GR, Assefa Y, et al. Nutrient partitioning and stoichiometry in soybean: A synthesis-analysis. Field Crops Research, 2017, 200: 18-27 |