欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2025, Vol. 36 ›› Issue (10): 3175-3186.doi: 10.13287/j.1001-9332.202510.007

• 研究报告 • 上一篇    下一篇

毛竹根际多功能解磷菌zafu-111的分离及全基因组解析

房翠莲1,2, 曹婷婷1,2, 尹语申1,2, 胡昊鸿1,2, 邹程康1,2, 郑邹程1,2, 李全1,2, 宋新章1,2*   

  1. 1浙江农林大学, 森林食物资源挖掘与利用全国重点实验室, 杭州 311300;
    2浙江农林大学, 竹子研究院, 竹业科学与技术教育部重点实验室, 杭州 311300
  • 收稿日期:2025-07-19 修回日期:2025-08-26 发布日期:2026-05-04
  • 通讯作者: *E-mail: xzsong@126.com
  • 作者简介:房翠莲, 女, 2000年生, 硕士研究生。主要从事土壤生态学研究。E-mail: 2023102072007@stu.zafu.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LQ24C160005,LQ23C160006)、国家自然科学基金项目(32125027,32301674)和浙江农林大学人才启动项目(2022LFR006,2022LFR106)

Isolation and whole-genome analysis of a multifunctional strain zafu-111 for phosphate-solubilizing in the rhizosphere of Phyllostachys edulis

FANG Cuilian1,2, CAO Tingting1,2, YIN Yushen1,2, HU Haohong1,2, ZHOU Chengkang1,2, ZHENG Zhoucheng1,2, LI Quan1,2, SONG Xinzhang1,2*   

  1. 1National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China;
    2Key Laboratory of Bamboo Science and Technology of Ministry of Education, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China
  • Received:2025-07-19 Revised:2025-08-26 Published:2026-05-04

摘要: 土壤有效磷匮乏是制约毛竹林生产力和生态功能发挥的关键因素,挖掘其根际解磷菌资源、探究菌株解磷机制是绿色、高效培育毛竹林的重要策略。本研究采用高通量筛选方法分离毛竹根际解磷菌,探究其在15种碳源下的解磷效果,采用全基因测序技术分析菌株参与磷循环的相关基因,通过接种试验探究菌株对长期磷添加(100 kg P·hm-2·a-1)土壤磷的溶解能力。从毛竹根际分离出一株高效解磷细菌zafu-111,经鉴定为洋葱伯克霍尔德菌。该菌株主要利用葡萄糖和柠檬酸等4种碳源溶解3种无机磷(磷酸三钙、磷酸铁、磷酸铝)和2种有机磷(卵磷脂和植酸钙),解磷能力最高为54.55 mg·L-1·d-1。菌株zafu-111具有无机磷溶解、有机磷矿化、磷转运和磷饥饿调控4类参与土壤磷循环的功能基因,gltAppa等41个有机酸代谢的编码基因和phoAphoD等45个调控磷酸酶合成的基因。此外,菌株zafu-111具有产吲哚乙酸(IAA)、分泌铁载体、降解木质素和分解硅酸钙的能力。接种30 d后,菌株zafu-111使对照样地土壤酸性磷酸酶提高34.4%,有效磷含量增加21.6%;在磷添加样地二者则分别降低5.9%和6.8%。接种90 d后,对照样地土壤pH提高0.03个单位,有效磷含量无显著变化;而磷添加样地土壤的pH提高0.06个单位,有效磷含量提高35.4%。综上,菌株zafu-111可利用多种碳源提高难溶性磷的溶解,同时具备丰富的植物促生功能基因及相关特性,在缓解毛竹林磷胁迫及微生物菌肥开发中具有重要潜力。

关键词: 毛竹, 伯克霍尔德菌, 解磷菌, 土壤磷活化, 基因组

Abstract: The deficiency of soil available phosphorus (P) is a key factor restricting the productivity and ecological function of Moso bamboo (Phyllostachys edulis) forest. It is thus important to explore the resources of rhizosphere P-solubilizing bacteria (PSB) and their solubilizing mechanisms for green and efficient cultivation of Moso bamboo forest. In this study, we isolated PSB from the rhizosphere using high-throughput screening method, and investigated its P-solubilizing activity under various carbon sources. We analyzed the genes involved in P cycling by whole-genome sequencing technology. An inoculation experiment was conducted to explore the P-solubilizing ability of the strain in soils with long-term P addition (100 kg P·hm-2·a-1). The highly efficient P-solubilizing bacterium, zafu-111, isolated from the rhizosphere, was identified as Burkholderia cepacia. The strain mainly utilized four kinds of carbon sources, such as glucose and citric acid to dissolve three inorganic P (Ca3(PO4)2, FePO4, AlPO4) and two organic P (lecithin and calcium phytate), with a maximum activity of 54.55 mg·L-1·d-1. The strain zafu-111 possessed four categories of functional genes involved in soil P cycling, such as inorganic P solubilization, organic P mineralization, P transportation, and P starvation regulation. The strain contained 41 coding genes for organic acid metabolism (such as gltA and ppa) and 45 genes regulating phosphatase synthesis (including phoA and phoD). Additionally, strain zafu-111 could produce IAA, secrete siderophores, decompose lignin and calcium silicate. After 30 d inoculation, strain zafu-111 increased acid phosphatase activity by 34.4% and elevated available P content by 21.6% in the control, but decreased both by 5.9% and 6.8% in the P addition group. After 90 d inoculation, soil pH in the control increased by 0.03 units with no significant change in available P content; P addition increased pH by 0.06 units and available P by 35.4%. Overall, strain zafu-111 improved the dissolution of insoluble P through utilizing various carbon sources, and possessed abundant functional genes and traits associated with plant growth-promoting. These characteristics of strain provide significant potential for alleviating P stress in Moso bamboo forests and developing microbial fertilizers.

Key words: Moso bamboo, Burkholderia, phosphorus-solubilizing microorganism, soil phosphorus mobilization, genome