[1] Vitousek PM, Howarth RW. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 1991,13: 87-115 [2] Wen Z, Xu W, Li Q, et al. Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 2020, 144: 106022 [3] 方运霆, 莫江明, Per Gundersen, 等. 森林土壤氮素转换及其对氮沉降的响应. 生态学报, 2004, 24(7): 1523-1531 [4] Du E, Terrer C, Pellegrini AFA, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13: 221-226 [5] Qiu LJ, Gou X, Kong YM, et al. Nitrogen addition stimulates N2O emissions via changes in denitrification community composition in a subtropical nitrogen-rich forest. Journal of Environmental Management, 2023, 348: 119274 [6] Aber JD, Nadelhoffer KJ, Steudler P, et al. Nitrogen saturation in Northern forest ecosystems. BioScience, 1989, 39: 378-386 [7] Lu M, Yang YH, Luo YQ, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytologist, 2011, 189: 1040-1050 [8] Chen H, Gurmesa GA, Zhang W, et al. Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: Hypothesis testing. Functional Ecology, 2016, 30: 305-313 [9] Brenner RE, Boone RD, Ruess RW. Nitrogen additions to pristine, high-latitude, forest ecosystems: Consequences for soil nitrogen transformations and retention in mid and late succession. Biogeochemistry, 2005, 72: 257-282 [10] Carey CJ, Dove NC, Beman JM, et al. Meta-analysis reveals ammonia-oxidizing bacteria respond more strongly to nitrogen addition than ammonia-oxidizing archaea. Soil Biology and Biochemistry, 2016, 99: 158-166 [11] Liu L, Zhang T, Gilliam FS, et al. Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. BioScience, 2013, 8: e61188 [12] Wang JY, Chadwick DR, Cheng Y, et al. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Science of the Total Environment, 2018, 616-617: 908-917 [13] Yao L, Gong Y, Ye C, et al. Soil denitrification rates are more sensitive to hydrological changes than restoration approaches in a unique riparian zone. Functional Ecology, 2022, 36: 2056-2068 [14] Tang YQ, Zhang XY, Li DD, et al. Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biology and Biochemistry, 2016, 103: 284-293 [15] Song L, Niu SL. Increased soil microbial AOB amoA and narG abundances susta in long-term positive responses of nitrification and denitrification to N deposition. Soil Biology and Biochemistry, 2022, 166: 108539 [16] Dail DB, Hollinger DY, Davidson EA, et al. Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia, 2009, 160: 589-599 [17] Liu T, Mao P, Shi LL, et al. Forest canopy maintains the soil community composition under elevated nitrogen deposition. Soil Biology and Biochemistry, 2020, 143: 107733 [18] Liu Y, Tan XP, Fu SL, et al. Canopy and understory nitrogen addition alters organic soil bacterial communities but not fungal communities in a temperate forest. Frontiers in Microbiology, 2022, 13: 888121 [19] Zhang W, Shen WJ, Zhu SD, et al. Can canopy addition of nitrogen better illustrate the effect of atmospheric nitrogen deposition on forest ecosystem? Scientific Reports, 2015, 5: 11245 [20] Jiang WT, Zhang HK, Fang Y, et al. Understory N application overestimates the effect of atmospheric N deposition on soil N2O emissions. Geoderma, 2023, 437: 116611 [21] 冯鹏飞, 李玉敏. 2021中国竹资源报告. 世界竹藤通讯, 2023, 21(2): 100-103 [22] Liu XJ, Zhang Y, Han WX, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494: 459-462 [23] 魏经纬, 肖向前, 卓寿佳, 等. 林冠氮沉降对毛竹林土壤磷组分的影响. 土壤学报, 2024, 62(1): 233-245 [24] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2011: 54-71 [25] Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34: 1309-1315 [26] Taylor AE, Zeglin LH, Dooley S, et al. Evidence for different contributions of archaea and bacteria to the ammonia-oxidizing potential of diverse Oregon soils. Applied and Environmental Microbiology, 2010, 76: 7691-7698 [27] 叶桂萍, 蓝嘉惠, 成于恒, 等. 长期施肥对旱地红壤反硝化潜势和反硝化菌的影响. 亚热带资源与环境学报, 2024, 19(4): 45-52 [28] 周钟昱, 张海阔, 梁佳辉, 等. 太湖流域上游竹林河岸带土壤反硝化酶活性及其影响因素. 应用生态学报, 2021, 32(9): 3070-3080 [29] Zhong W, Bian B, Gao N, et al. Nitrogen fertilization induced changes in ammonia oxidation are attributable mostly to bacteria rather than archaea in greenhouse-based high N input vegetable soil. Soil Biology and Biochemistry, 2016, 93: 150-159 [30] Throbäck IN, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004, 49: 401-417 [31] Henry S, Bru D, Stres B, et al. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG,nirK, and nosZ genes in soils. Applied and Environmental Microbiology, 2006, 72: 5181-5189 [32] He LL, Zhao X, Wang SQ, et al. The effects of rice-straw biochar addition on nitrification activity and nitrous oxide emissions in two Oxisols. Soil and Tillage Research, 2016, 164: 52-62 [33] 姜铭楷, 马书琴, 熊艳云, 等. 氮沉降驱动下凋落物分解对毛竹林土壤有机碳组分的影响. 应用生态学报, 2024, 35(11): 2983-2991 [34] 李仁洪, 胡庭兴, 涂利华, 等. 模拟氮沉降对华西雨屏区慈竹林凋落物分解的影响. 应用生态学报, 2009, 20(11): 2588-2593 [35] Wang L, Zhang BG, Fang YY, et al. Distinct effects of canopy vs understory and organic vs inorganic N deposition on root resource acquisition strategies of subtropical Moso bamboo plants. Science of the Total Environment, 2024, 927: 172424 [36] 王毅焕, 靳一丹, 姜铭楷, 等. 短期氮沉降改变毛竹林凋落物和土壤有机质化学组成. 应用生态学报, 2023, 34(10): 2593-2600 [37] 张艺, 王春梅, 许可, 等. 模拟氮沉降对温带森林土壤酶活性的影响. 生态学报, 2017, 37(6): 1956-1965 [38] 涂利华, 胡庭兴, 张健, 等. 华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应. 应用生态学报, 2009, 20(12): 2943-2948 [39] 王倩, 王克勤, 宋娅丽, 等. 滇中云南松林土壤-微生物-胞外酶化学计量特征对氮沉降的响应. 应用生态学报, 2024, 35(7): 1789-1798 [40] Zou N, Huang L, Chen HJ, et al. Nitrogen form plays an important role in the growth of Moso bamboo (Phyllostachys edulis) seedlings. PeerJ, 2020, 8: e9938 [41] Chu HY, Fujii T, Morimoto S, et al. Population size and specific nitrification potential of soil ammonia-oxidizing bacteria under long-term fertilizer management. Soil Biology and Biochemistry, 2008, 40: 1960-1963 [42] Hill AR, Cardaci M. Denitrification and organic carbon availability in riparian wetland soils and subsurface sediments. Soil Science Society of America Journal, 2004, 68: 320-325 [43] Bowman WD, Cleveland CC, Halada L', et al. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 2008, 1: 767-770 [44] 郑翔, 刘琦, 曹敏敏, 等. 森林土壤氧化亚氮排放对氮输入的响应研究进展. 土壤学报, 2022, 59(5): 1190-1203 |