Chinese Journal of Applied Ecology ›› 2020, Vol. 31 ›› Issue (8): 2759-2766.doi: 10.13287/j.1001-9332.202008.036
Previous Articles Next Articles
CHEN La1, MI Guo-hua2, LI Ke-ke1, SHAO Hui2, HU Dong3, YANG Jun-peng1, SUI Xin-hua1*, CHEN Wen-xin1
Received:
2019-12-04
Revised:
2020-04-24
Online:
2020-08-15
Published:
2021-02-15
Supported by:
CHEN La, MI Guo-hua, LI Ke-ke, SHAO Hui, HU Dong, YANG Jun-peng, SUI Xin-hua, CHEN Wen-xin. Effects of multifunctional plant rhizosphere promoting bacteria on maize growth in black soil areas in Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2759-2766.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202008.036
[1] Xu XZ, Xu Y, Chen SC, et al. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environmental Science & Policy, 2010, 13: 793-800 [2] Yu H, Gao Q, Shao Z, et al. Decreasing nitrogen ferti-lizer input had little effect on microbial communities in three types of soils. PLoS One, 2016, 11(3): e0151622, doi: 10.1371/journal.pone.0151622 [3] Guo JH, Liu XJ, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010, 327: 1008-1010 [4] Zhou J, Guan D, Zhou B, et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biology and Biochemistry, 2015, 90: 42-51 [5] Mahanty T, Bhattacharjee S, Goswami M, et al. Biofertilizers: A potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 2017, 24: 3315-3335 [6] 李俊, 姜昕, 马鸣超, 等. 我国微生物肥料产业需求与技术创新. 中国土壤与肥料, 2019(2): 1-5 [Li J, Jiang X, Ma M-C, et al. Development demand and technical innovation for bio-fertilizer industry in China. Soil and Fertilizer Sciences in China, 2019(2): 1-5] [7] Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255: 571-586 [8] Kloepper JW, Schroth MN. Plant growth-promoting rhizobacteria on radishes. Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Angers, 1978: 879-882 [9] Bardi L, Malus E. Drought and nutritional stresses in plant: Alleviating role of rhizospheric microorganisms// Haryana N, Punj S, eds. Abiotic Stress: New Research. Hauppauge, NY, USA: Nova Science Publishers Inc., 2012: 1-57 [10] Malusa E, Vassilev N. A contribution to set a legal framework for biofertilisers. Applied Microbiology and Biotechnology, 2014, 98: 6599-6607 [11] Adesemoye AO, Torbert HA, Kloepper JW. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecology, 2009, 58: 921-929 [12] 胡江春, 薛德林, 马成新, 等. 植物根际促生菌(PGPR)的研究与应用前景. 应用生态学报, 2004, 15(10): 1963-1966 [Hu J-C, Xue D-L, Ma C-X, et al.Research advances in plant growth-promoting rhizobacteria and its application prospects. Chinese Journal of Applied Ecology, 2004, 15(10): 1963-1966] [13] 王素英, 陶光灿, 谢光辉, 等. 我国微生物肥料的应用研究进展. 中国农业大学学报, 2013, 8(1): 14-18 [Wang S-Y, Tao G-C, Xie G-H, et al. A review of effects of biofertilizers on crop yield and quality. Journal of China Agricultural University, 2013, 8(1): 14-18] [14] Cassn F, Diaz-Zorita M. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 2016, 103: 117-130 [15] 荣良燕, 姚拓, 黄高宝, 等. 植物根际优良促生菌(PGPR)筛选及其接种剂部分替代化肥对玉米生长影响研究. 干旱地区农业研究, 2013, 31(2): 59-65 [Rong L-Y, Yao T, Huang G-B, et al. Screening of plant growth promoting rhizobacteria strains and effects of inoculant on growth of maize by replacing part of chemical fertilizers. Agricultural Research in the Arid Areas, 2013, 31(2): 59-65] [16] 陈龙, 孙广正, 姚拓, 等. 干旱区微生物肥料替代部分化肥对玉米生长及土壤微生物的影响. 干旱区资源与环境, 2016, 30(7): 108-113 [Chen L, Sun G-Z, Yao T, et al. Effect of chemical fertilizer partly replaced by microbial fertilizer on maize growth and soil microorganism in arid area. Journal of Arid Land Resources and Environment, 2016, 30(7): 108-113] [17] 孙淑荣, 吴海燕, 刘春光, 等. PGPR复合制剂对玉米增产效果的研究. 吉林农业科学, 2004, 29(5): 22-28 [Sun S-R, Wu H-Y, Liu C-G, et al. Study on the effect of PGPR complex microbial community on maize yield. Journal of Jilin Agricultural Sciences, 2004, 29(5): 22-28] [18] Vacheron J, Desbrosses G, Bouffaud ML, et al. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science, 2013, 4: 356, doi: 10.3389/fpls.2013.00356 [19] 余悦. 黄河三角洲原生演替中土壤微生物多样性及其与土壤理化性质关系. 博士论文. 济南: 山东大学, 2012 [Yu Y. Relationships between Soil Microbial Diversity and Soil Physicochemical Properties along the Primary Succession of Yellow River Delta. PhD Thesis. Ji'nan: Shandong University, 2012] [20] Pikovskaya RI. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology, 1948, 17: 362-370 [21] 林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布. 土壤与环境, 2000, 9(1): 34-37 [Lin Q-M, Zhao X-R, Sun Y-X, et al.Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 2000, 9(1): 34-37] [22] Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 1987, 160: 47-56 [23] 刘晓璐, 刘永智, 郭涛, 等. 解钾细菌的筛选、鉴定以及高效培养. 北京科技大学学报, 2013, 35(4): 139-145 [Liu X-L, Liu Y-Z, Guo T, et al. Isolation, identification and high-efficiency cultivation of potassium-releasing bacteria. Journal of University of Science and Technology Beijing, 2013, 35(4): 139-145] [24] Glickmann E, Dessaux YA. Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 1995, 61: 793-796 [25] 吴红萍, 万红艳, 王锐萍. 戊唑醇农药降解菌的筛选及其降解效能初探. 农药, 2013, 52(2): 102-104 [Wu H-P, Wan H-Y, Wang R-P. Tebuconazole pesticide degradation bacteria screening and its degradation efficiency trial. Agrochemicals, 2013, 52(2): 102-104] [26] 王金生, 王君, 吴俊江, 等. 基于GGE-biplot的大豆根瘤菌抗逆性资源筛选. 大豆科学, 2017, 36(6): 894-899 [Wang J-S, Wang J, Wu J-J, et al. Screening the resistance resources of Rhizobium japonicum based on GGE-biplot. Soybean Science, 2017, 36(6): 894-899] [27] 廖婷婷, 翟磊, 高成华, 等. 一株产甘露聚糖酶菌株的分离鉴定及酶的纯化与性质. 微生物学报, 2011, 51(11): 1520-1526 [Liao T-T, Zhai L, Gao C-H, et al. Purification and characterization of mannanase from an alkaliphilic mannanase producing bacterium HMTS15. Acta Microbiologica Sinica, 2011, 51(11): 1520-1526] [28] 万兵兵, 刘晔, 吴越, 等. 一株玉米根际多功能促生菌的筛选鉴定及效应研究. 生物技术通报, 2016, 32(8): 169-176 [Wan B-B, Liu Y, Wu Y, et al. Screening and identification of maize growth-promoting rhizobacteria and its promoting effects on maize. Biotechnology Bulletin, 2016, 32(8): 169-176] [29] 姚拓. 高寒地区燕麦根际联合固氮菌研究: Ⅱ. 固氮菌的溶磷性和分泌植物生长素特性测定. 草业学报, 2004, 13(3): 85-90 [Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine region: Ⅱ. Phosphate-solubilizing power and auxin production. Acta Prataculturae Sinica, 2004, 13(3): 85-90] [30] 荣良燕, 姚拓, 赵桂琴, 等. 产铁载体 PGPR 菌筛选及其对病原菌的拮抗作用. 植物保护, 2011, 37(1): 59-64 [Rong L-Y, Yao T, Zhao G-Q, et al. Screening of siderophore-producing PGPR bacteria and their anta-gonism against the pathogens. Plant Protection, 2011, 37(1): 59-64] [31] 陈强, 陈文新, 张小平, 等. 四川省部分豆科植物根瘤菌的遗传多样性. 应用与环境生物学报, 2008, 14(1): 83-89 [Chen Q, Chen W-X, Zhang X-P, et al. Genetic diversity of rhizobia isolated from some legumes in Sichuan, China. Chinese Journal of Applied and Environmental Biology, 2008, 14(1): 83-89] [32] Lane DJ. 16S/23S rRNA Sequencing// Stackebrandt E, Goodfellow M, eds. Nucleic Acid Techniques in Bacte-rial Systematics. Chichester, UK: John Wiley and Sons, 1991: 115-175 [33] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33: 1870-1874 [34] 于玲玲, 郭强, 赵贵元. 保护性耕作对华北地区玉米产量及水分利用效率的影响. 内蒙古农业大学学报, 2017, 38(3): 19-23 [Yu L-L, Guo Q, Zhao G-Y. The effects of conservation tillage on maize yield and water use efficiency in North China. Journal of Inner Mongolia Agricultural University, 2017, 38(3): 19-23] [35] 陈延玲. 协调玉米高产与氮高效转运的机制. 博士论文. 北京:中国农业大学, 2015 [Chen Y-L. Mechanisms for the Coordination of High Yield and High Nitrogen Remobilization Efficiency in Maize. PhD Thesis. Beijing: China Agricultural University, 2015] [36] Cassn F, Perrig D, Sgroy V, et al. Corrigendum to “Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) [Eur. J. Soil Biol. 45 (2009) 28-35]”. European Journal of Soil Biology, 2011, 47: 1, doi: 10.1016/j.ejsobi.2011.05.003 [37] Díaz-Zorita M, Grove J. Wheat grain response to nitrogen fertilization and field inoculation with a liquid formulation of Azospirillum brasilense. ASA-CSSA-SSSA International Annual Meetings. Indianapolis, IN, USA, 2006: 25031 [38] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展. 应用生态学报, 2010, 21(1): 232-238 [Kang Y-J, Cheng J, Mei L-J, et al. Action mechanisms of plant growth-promoting rhizobacteria (PGPR): A review. Chinese Journal of Applied Ecology, 2010, 21(1): 232-238] [39] Dubeikovsky AN, Mordukhova EA, Kochetkov VV, et al. Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens bsp53a synthesizing an increased amount of indole-3-acetic acid. Soil Biology and Biochemistry, 1993, 25: 1277-1281 [40] Mi GH, Chen FJ, Yuan LX, et al. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Advances in Agronomy, 2016, 139: 73-97 [41] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 2005, 3: 307-319 [42] Barzanti R, Ozino F, Bazzicalupo M, et al. Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 2007, 53: 306-316 [43] 曹宁, 符力, 张玉斌, 等. 低温对玉米苗期根系生长及磷养分吸收的影响. 玉米科学, 2008, 16(4): 58-60 [Cao N, Fu L, Zhang Y-B, et al. Effects of low temperature on root of maize seedling growth and phosphorus uptake. Journal of Maize Sciences, 2008, 16(4): 58-60] [44] Whitelaw MA, Harden TJ, Helyar KR. Phosphate solubilisation in solution culture by the soil fungus Penicil-lium radicum. Soil Biology and Biochemistry, 1999, 31: 655-665 |
[1] | ZHANG Yue, MA Weige, LIU Gue, ZHOU Quanlai, GUO Jia, CAO Wei. Assessment of the current invasive situation of alien plants in semi-arid area of Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 73-79. |
[2] | LI Fanghao, FAN Haoming, SHI Hao, XU Xiuquan. Spatial and temporal distribution characteristics of extreme wind and its effect on wind erosion in Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(1): 87-94. |
[3] | LI Changqing, JI Meng, MA Mengmeng, WANG Shuo, LIU Huan, SUN Zhimei. Effects of combined natural synergists and chemical inhibitors on yield, nitrogen utilization and balance in wheat/maize rotation system [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2391-2397. |
[4] | ZHAO Yajun, ZHENG Fenli, AN Xiaobing, SHI Hongqiang, HU Wentao, ZHANG Jiaqiong. Compound erosion effect of snowmelt, wind, and rainfall on sloping farmlands of Chinese typical Mollisol region [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2421-2428. |
[5] | YANG Zhenkang, YANG Wanrong, LIU Zhijuan, GAO Weida, REN Tusheng, SHEN Yanjun, YANG Xiaoguang. Effects of climate change on wind erosion in the three provinces of Northeast China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2429-2435. |
[6] | SUI Pengxiang, LUO Yang, ZHENG Hongbing, LI Ruiping, WANG Hao, YUAN Ye, ZHENG Jinyu, LIU Wuren. Effects of long-term tillage practices on the stability of soil aggregates and organic carbon in black soil farmland [J]. Chinese Journal of Applied Ecology, 2023, 34(7): 1853-1861. |
[7] | WANG Shihao, XU Xinliang, HUANG Lin, ZHAO Guang. Spatial and temporal variations of soil nutrients of cropland in Northeast China from the 1980s to the 2010s [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 865-875. |
[8] | MIAO He, YUAN Lei, YANG Miaoyin, HU Yanyu, CHEN Xin, HE Hongbo, ZHANG Xudong, XIE Hongtu, LU Caiyan. Mechanisms of conservation tillage on nitrogen-fertilizer reduction and maize grain improvement in Mollisols of Northeast China: Insights from a 15N tracing study [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 876-882. |
[9] | ZHAO Jiyu, LI Ruiwen, WANG Qi, WANG Shunyuan, TIAN Yuchun, ZHAO Jinmeng, REN Baizhao, ZHAO Bin, LIU Peng, ZHANG Jiwang. Effects of seed grading on population regularity degree and yield of summer maize [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3333-3339. |
[10] | CHEN Yue, ZHAO Gengxing, CHANG Chunyan, WANG Zhuoran, LI Yinshuai, ZHAO Huansan, ZHANG Shuwei, PAN Jingrui. Grain yield estimation of wheat-maize rotation cultivated land based on Sentinel-2 multi-spectral image: A case study in Caoxian County, Shandong, China [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3347-3356. |
[11] | GU Jiacheng, WANG Wenmin, WANG Zhen, LI Luhua, JIANG Guiju, WANG Jiaping, CHENG Zhibo. Effects of maize and soybean intercropping on soil phosphorus bioavailability and microbial community structure in rhizosphere. [J]. Chinese Journal of Applied Ecology, 2023, 34(11): 3030-3038. |
[12] | CHEN Junnan, JIANG Wenyang, ZAN Zhiman, WANG Jiangtao, ZHENG Bin, LIU Ling, LIU Juan, JIAO Nianyuan. Effects of maize and peanut co-ridge intercropping on crop photosynthetic characteristics and intercropping advantages [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2672-2682. |
[13] | LI Ruiping, LUO Yang, SUI Pengxiang, ZHENG Hongbing, MING Bo, LI Shaokun, WANG Hao, ZHENG Jinyu. Short-term effect of different returning methods of maize straw on the temperature of black soil plough layer [J]. Chinese Journal of Applied Ecology, 2023, 34(10): 2693-2702. |
[14] | LI Chang-xin, YAN Qi, NI Li-li, ZHANG Shu-xin, WANG Li-mei. Effects of elevated atmospheric CO2 concentration on nonstructural carbohydrates and grain quality of maize [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 123-130. |
[15] | SUN Jian, WANG Ya-yi, ZHANG Xin-peng, LI Song-ling. Screening of phosphorus solubilizing microorganisms in cold environment and their effects on the growth of Brassica napus [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 221-228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||