[1] 魏志标, 柏兆海, 马林, 等. 中国苜蓿、黑麦草和燕麦草产量差及影响因素. 中国农业科学, 2018, 51(3): 507-522 [2] 李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响. 应用生态学报, 2020, 31(5): 1543-1550 [3] 张卫红, 刘大林, 苗彦军, 等. 西藏3种野生牧草苗期对干旱胁迫的响应. 生态学报, 2017, 37(21): 7277-7285 [4] 刘冬, 张剑, 包雅兰, 等. 敦煌阳关湿地芦苇叶片养分重吸收模式及其对土壤水分的响应. 应用生态学报, 2020, 31(3): 807-813 [5] 李亚楠, 张淞著, 张藤子, 等. 干旱-高钙对麻栎幼苗非结构性碳水化合物含量和分配的影响. 生态学报, 2020, 40(7): 2277-2284 [6] García JJ, López-Pingarrón L, Almeida-Souza P, et al. Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. Journal of Pineal Research, 2014, 56: 225-237 [7] 范海霞, 赵飒, 辛国奇, 等. 外源褪黑素对干旱胁迫下牡丹幼苗生理特性的影响. 生物技术通报, 2020, 36(6): 63-72 [8] 齐晓媛, 王文莉, 胡少卿, 等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响. 应用生态学报, 2021, 32(7): 2496-2504 [9] 楼君, 索金伟, 张慧, 等. 褪黑素处理对高节竹笋低温贮藏过程中木质化的影响. 林业科学, 2019, 55(12): 41-49 [10] 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响. 植物生理学报, 2021, 57(2): 393-401 [11] 赵成凤, 王晨光, 李红杰, 等. 干旱及复水条件下外源褪黑素对玉米叶片光合作用的影响. 生态学报, 2021, 41(4): 1431-1439 [12] 叶君, 邓西平, 王仕稳, 等. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响. 麦类作物学报, 2015, 35(9): 1275-1283 [13] Xia H, Ni Z, Hu R, et al. Melatonin alleviates drought stress by a non-enzymatic and enzymatic antioxidative system in kiwifruit seedlings. International Journal of Molecular Sciences, 2020, 21: 1259-1262 [14] Zou J, Yu H, Yu Q, et al. Physiological and UPLC-MS/MS widely targeted metabolites mechanisms of alleviation of drought stress-induced soybean growth inhibition by melatonin. Industrial Crops and Products, 2021, 163: 113323 [15] 李冬, 申洪涛, 王艳芳, 等. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响. 草业学报, 2021, 30(1): 130-139 [16] 马旭辉, 陈茹梅, 柳小庆, 等. 褪黑素对玉米幼苗根系发育和抗旱性的影响. 生物技术通报, 2021, 37(2): 1-14 [17] 何松榆, 秦彬, 张明聪, 等. 水分胁迫下外源褪黑素对大豆苗期抗氧化特性和产量的影响. 大豆科学, 2019, 38(3): 407-412 [18] 曹新龙. 干旱胁迫下紫花苜蓿对外源褪黑素的生理响应. 硕士论文. 西安: 西北农林科技大学, 2020 [19] 尉欣荣, 张智伟, 周雨, 等. 褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用. 草地学报, 2020, 28(5): 1337-1345 [20] 丁龙, 赵慧敏, 曾文静, 等. 五种西北旱区植物对干旱胁迫的生理响应. 应用生态学报, 2017, 28(5): 1455-1463 [21] 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版, 2000 [22] 杨新元. 外源褪黑素对干旱胁迫下向日葵幼苗生长、光合及抗氧化系统的影响. 华北农学报, 2019, 34(4): 113-121 [23] 吴敏, 张文辉, 周建云, 等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响. 生态学报, 2014, 34(15): 4223-4233 [24] 王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响. 生态学报, 2018, 38(19): 7026-7033 [25] 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展. 福建农林大学学报: 自然科学版, 2016, 45(5): 481-489 [26] Ahmad S, Kamran M, Ding R, et al. Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ, 2019, 7: e7793 [27] Tan DX, Hardeland R, Manchester LC, et al. Functio-nal roles of melatonin in plants, and perspectives in nutritional and agricultural science. Journal of Experimental Botany, 2012, 63: 577-597 [28] Arnao MB, Hernández-Ruiz J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trends in Plant Science, 2014, 19: 789-797 [29] 刘冬, 张剑, 包雅兰, 等. 敦煌阳关湿地芦苇叶片养分重吸收模式及其对土壤水分的响应. 应用生态学报, 2020, 31(3): 807-813 [30] 李军宏, 王远远, 夏军, 等. 两个不同耐旱性棉花品种根系生理特性对干旱的响应. 应用生态学报, 2020, 31(10): 3453-3460 [31] 王凯, 雷虹, 王宗琰, 等. 干旱胁迫下小叶锦鸡儿幼苗C、N、P分配规律及化学计量特征. 林业科学研究, 2019, 32(4): 47-56 [32] Liu L, Li D, Ma Y, et al. Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. Journal of Plant Growth Regulation, 2021, 40: 1074-1087 [33] Liang B, Ma C, Zhang Z, et al. Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and Experimental Botany, 2018, 155: 650-661 [34] Imran M, Latif KA, Shahzad R, et al. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants, 2021, 13: plab026 [35] 杨小龙, 须晖, 李天来, 等. 外源褪黑素对干旱胁迫下番茄叶片光合作用的影响. 中国农业科学, 2017, 50(16): 3186-3195 [36] Cherono S, Ntini C, Wassie M, et al. Exogenous application of melatonin improves drought tolerance in coffee by regulating photosynthetic efficiency and oxidative damage. Journal of the American Society for Horticultural Science, 2021, 146: 24-32 [37] Zheng X, Zhou J, Tan DX, et al. Melatonin improves waterlogging tolerance of Malus baccata (Linn.) Borkh. seedlings by maintaining aerobic respiration, photosynthesis and ROS migration. Frontiers in Plant Science, 2017, 8: 483 [38] Huang B, Chen YE, Zhao YQ, et al. Exogenous melatonin alleviates oxidative damages and protects photosystem Ⅱ in maize seedlings under drought stress. Frontiers in Plant Science, 2019, 10: 677 |