[1] Comstock JP, Ehleringer JR. Contrasting photosynthetic behavior in leaves and twigs of Hymenoclea salsola, a green-twigged warm desert shrub. American Journal of Botany, 1988, 75: 1360-1370 [2] Givnish TJ. Plants stems: Biomechanical adaptation for energy capture and influence on species distribution//Gartner BL, ed. Plant Stems: Physiology and Functional Morphology. San Diego, CA, USA: Academic Press, 1995: 3-49 [3] Schneider CK. Dendrologische Winterstudien. Nature, 1903, 68: 220-221 [4] Nilsen ET, Rundel PW, Sharifi MR. Diurnal gas exchange characteristics of two stem photosynthesizing legumes in relation to the climate at two contrasting sites in the california desert. Flora, 1996, 191: 105-116 [5] Cernusak LA, Hutley LB. Stable isotopes reveal the contribution of corticular photosynthesis to growth in branches of Eucalyptus miniata. Plant Physiology, 2011, 155: 515-523 [6] Bushong FW. Composition of gas from cottonwood trees. Transactions of the Kansas Academy of Science, 1907: 21-53 [7] Teskey RO, Saveyn A, Steppe K, et al. Origin, fate and significance of CO2 in tree stems. New Phytologist, 2008, 177: 17-32 [8] Wittmann C, Pfanz H, Loreto F, et al. Stem CO2release under illumination: Corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration? Plant, Cell & Environment, 2006, 29: 1149-1158 [9] Wittmann C, Pfanz H. Antitranspirant functions of stem periderms and their influence on corticular photosynthesis under drought stress. Trees-Structure and Function, 2008, 22: 187-196 [10] De Baerdemaeker NJF, Salomon RL, De Roo L, et al. Sugars from woody tissue photosynthesis reduce xylem vulnerability to cavitation. New Phytologist, 2017, 216: 720-727 [11] Wittmann C, Pfanz H. More than just CO2 recycling: Corticular photosynthesis as a mechanism to reduce the risk of an energy crisis induced by low oxygen. New Phytologist, 2018, 219: 551-564 [12] 祖元刚, 张衷华, 王文杰, 等. 薇甘菊叶和茎的光合特性. 植物生态学报, 2006, 30(6): 998-1004 [13] 蔡锡安, 曾小平, 陈远其. 树干皮层光合作用——生理生态功能和测定方法. 生态学报, 2015, 35(21): 6909-6922 [14] Liu JX, Gu L, Yu Y, et al. Corticular photosynthesis drives bark water uptake to refill embolized vessels in dehydrated branches of Salix matsudana. Plant, Cell & Environment, 2019, 42: 2584-2596 [15] Sevanto S, McDowell NG, Dickman LT, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 2014, 37: 153-161 [16] Nilsen ET, Sharifi MR. Seasonal acclimation of stem photosynthesis in woody legume species from the Mojave and Sonoran deserts of California. Plant Physiology, 1994, 105: 1385-1391 [17] Roo LD, Salomón RL, Oleksyn J, et al. Woody tissue photosynthesis delays drought stress in Populus tremula trees and maintains starch reserves in branch xylem tissues. New Phytologist, 2020, 228: 70-81 [18] Cernusak LA, Marshall JD. Photosynthetic refixation in branches of Western White Pine. Functional Ecology, 2000, 14: 300-311 [19] Cernusak LA, Cheesman AW. The benefits of recycling: How photosynthetic bark can increase drought tolerance. New Phytologist, 2015, 208: 995-997 [20] Bloemen J, Vergeynst L, Overlaet-Michiels L, et al. How important is woody tissue photosynthesis in poplar during drought stress? Trees, 2014, 30: 63-72 [21] Saveyn A, Steppe K, Ubierna N, et al. Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. Plant, Cell & Environment, 2010, 33: 1949-1958 [22] Kocurek M, Kornas A, Wierzchnicki R, et al. Importance of stem photosynthesis in plant carbon allocation of Clusia minor. Trees-Structure and Function, 2020, 34: 1009-1020 [23] 戴岳, 郑新军, 唐立松, 等. 古尔班通古特沙漠南缘梭梭水分利用动态. 植物生态学报, 2014, 38(11): 1214-1225 [24] Dror D, Weitzman G, Rog I, et al. Physiological effects of mature tree transplanting characterize the roles of the soil-root interface in the field. Agricultural and Forest Meteorology, 2020, 295: 108192 [25] Chang TG, Song QF, Zhao HL, et al. An in situ approach to characterizing photosynthetic gas exchange of rice panicle. Plant Methods, 2020, 16: 92 [26] 叶子飘. 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 2010, 34(6): 727-740 [27] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006: 74-77 [28] Dima E, Manetas Y, Psaras GK. Chlorophyll distribution pattern in inner stem tissues: Evidence from epifluo-rescence microscopy and reflectance measurements in 20 woody species. Trees-Structure and Function, 2006, 20: 515-521 [29] 李磊, 李向义, 林丽莎, 等. 两种生境条件下6种牧草叶绿素含量及荧光参数的比较. 植物生态学报, 2011, 35(6): 672-680 [30] 郭春爱, 刘芳, 许晓明. 叶绿素b缺失与植物的光合作用. 植物生理学通讯, 2006, 42(5): 967-973 [31] 王文杰, 祖元刚, 王慧梅. 林木非同化器官树枝(干)光合功能研究进展. 生态学报, 2007, 27(4): 1583-1595 [32] 张金尧, 刘俊祥, 巨关升, 等. 旱柳非叶光合组织(皮层)叶绿体光合特性. 林业科学, 2014, 50(11): 30-35 [33] Kocurek M, Pilarski J. Implication of stem structures for photosynthetic functions in select herbaceous plants. Polish Journal of Environmental Studies, 2012, 21: 1687-1696 [34] Luo X, Keenan TF. Global evidence for the acclimation of ecosystem photosynthesis to light. Nature Ecology & Evolution, 2020, 4: 1351-1357 [35] Wittmann C, Pfanz H. The optical, absorptive and chlorophyll fluorescence properties of young stems of five woody species. Environmental and Experimental Botany, 2016, 121: 83-93 [36] Comstock J, Ehleringer J. Effect of variations in leaf size on morphology and photosynthetic rate of twigs. Functional Ecology, 1990, 4: 209-221 [37] Wittmann C, Pfanz H. Temperature dependency of bark photosynthesis in beech (Fagus sylvatica L.) and birch (Betula pendula Roth.) trees. Journal of Experimental Botany, 2007, 58: 4293-4306 [38] Zha TS, Kellomaki S, Wang KY, et al. Respiratory responses of scots pine stems to 5 years of exposure to elevated CO2 concentration and temperature. Tree Physio-logy, 2005, 25: 49-56 [39] Ávila E, Herrera A, Tezara W. Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species. Photosynthetica, 2014, 52: 3-15 [40] Brándle J, Kunert N. A new automated stem CO2 efflux chamber based on industrial ultra-low-cost sensors. Tree Physiology, 2019, 39: 1975-1983 [41] Cavaleri MA, Oberbauer SF, Ryan MG. Wood CO2 efflux in a primary tropical rain forest. Global Change Biology, 2006, 12: 2442-2458 [42] Nilsen ET. The influence of water-stress on leaf and stem photosynthesis in Spartium junceum L. Plant, Cell & Environment, 1992, 15: 455-461 |