[1] 毛恋, 芦建国, 江海燕. 植物响应盐碱胁迫的机制. 分子植物育种, 2020, 18(10): 3441-3448 [2] 杨劲松, 姚荣江, 王相平, 等. 中国盐渍土研究:历程、现状与展望. 土壤学报, 2022, 59(1): 10-27 [3] Lu J, Wu J, Zhang C. Cleaner production of salt-tole-rance vegetable in coastal saline soils using reclaimed water irrigation: Observations from alleviated accumulation of endocrine disrupting chemicals and environmental burden. Journal of Cleaner Production, 2021, 297: 126746 [4] 魏芝玲, 韩元进, 卜媛媛. 木本植物逆境胁迫研究进展. 分子植物育种, 2020, 18(7): 2382-2397 [5] Gustafsson L, Norkrans B. On the mechanism of salt tole-rance. Archives of Microbiology, 1976, 110: 177-183 [6] Kosová K, Práil I, Vítámvás P. Protein contribution to plant salinity response and tolerance acquisition. International Journal of Molecular Sciences, 2013, 14: 6757-6789 [7] Yu Z, Duan X, Luo L, et al. How plant hormones mediate salt stress responses. Trends in Plant Science, 2020: 06008 [8] Pfeffer M, Korf H, Wich H. The role of the melatoni-nergic system in light-entrained behavior of mice. International Journal of Molecular Sciences, 2017, 18: 530 [9] Kamrul HM, Jalal AG, Yin LL, et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science, 2015, 6: 00601 [10] Zhang W, Zhang W, Wang S, et al. A quantitative assessment of the dynamic process and potential capacity of using gypsum to reclaim sodic soil. Journal of Soils and Sediments, 2023, 23: 3082-3095 [11] Bałabusta M, Szafrańska K, Posmyk MM. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science, 2016, 7: 575 [12] Wei YX, Zeng HQ, Hu LZ, et al. Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Frontiers in Plant Science, 2016, 7: 00676 [13] Xu W, Cai SY, Zhang Y, et al. Melatonin enhances thermo tolerance by promoting cellular protein protection in tomato plants. Journal of Pineal Research, 2016, 61: 12359 [14] 徐芳, 周海鹏, 郭早霞, 等. 植物外源褪黑素及其抗逆性研究. 基因组学与应用生物学, 2013, 32(2): 260-266 [15] 李红叶, 翟秀珍, 张少聪, 等. 外源褪黑素对干旱胁迫小麦发芽及幼苗生理特性的影响. 西北农林科技大学学报: 自然科学版, 2021, 49(6): 75-84 [16] 马旭辉, 陈茹梅, 柳小庆, 等. 褪黑素对玉米幼苗根系发育和抗旱性的影响. 生物技术通报, 2021, 37(2): 1-14 [17] 段文静, 妍君, 江丹, 等. 外源褪黑素对盐胁迫下棉花幼苗形态及抗氧化系统的影响. 中国生态农业学报, 2022, 30(1): 92-104 [18] 赛闹汪青, 达梦婷, 曹佳鑫, 等. 硝基苯酚胁迫下外源褪黑素对水稻幼苗生长及生理特性的影响. 植物科学学报, 2018, 36(6): 868-878 [19] 赵海亮, 左璐, 张璐, 等. 低温胁迫下外源褪黑素对番茄幼苗光抑制的缓解效应. 应用生态学报, 2023, 34(1): 151-159 [20] 史中飞, 梁娟红, 张小花, 等. 外源褪黑素对低温胁迫下油菜幼苗抗寒性的影响. 干旱地区农业研究, 2019, 37(4): 163-170 [21] Liu N, Jin Z, Wang S, et al. Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato. Scientia Horticulturae, 2015, 181: 18-25 [22] 向警, 黄倩, 鞠春燕, 等. 外源褪黑素对盐胁迫下水稻种子萌发与幼苗生长的影响. 植物生理学报, 2021, 57(2): 393-401 [23] 王伟香, 张锐敏, 孙艳, 等. 外源褪黑素对硝酸盐胁迫条件下黄瓜幼苗抗氧化系统的影响. 园艺学报, 2016, 43(4): 695-703 [24] 杜天浩, 周小婷, 朱兰英, 等. 褪黑素处理对盐胁迫下番茄果实品质及挥发性物质的影响. 食品科学, 2016, 37(15): 69-76 [25] 齐晓媛, 王文莉, 胡少卿, 等. 外源褪黑素对高温胁迫下菊花光合和生理特性的影响. 应用生态学报, 2021, 32(7): 2496-2504 [26] 李合生. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2006 [27] 高俊凤. 植物生理学试验指导. 北京: 高等教育出版社, 2006 [28] Jiang C, Cui Q, Feng K, et al. Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 2016, 38: 1-9 [29] 偶春, 张敏, 姚侠妹, 等. 外源褪黑素对盐胁迫下香椿幼苗生长及离子吸收和光合作用的影响. 西北植物学报, 2019, 39(12): 2226-2234 [30] Khan NM, Zhang J, Luo T, et al. Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: Antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Industrial Crops and Products, 2019, 140: 111597 [31] 王芳, 刘燕, 王铁兵, 等. 外源褪黑素对玉米幼苗盐胁迫的缓解效应研究. 中国草地学报, 2020, 42(5): 14-21 [32] 刘政, 胡孙田, 沈晓飞, 等. 外源褪黑素处理对月季幼苗盐胁迫的缓解效应. 浙江农林大学学报, 2020, 37(5): 957-962 [33] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53(3): 470-476 [34] Chen Y, Yuan BL, Wei ZH, et al. The ion homeostasis and ROS scavenging responses in “NL895” poplar plantlet organs under in vitro salinity stress. In Vitro Cellular & Developmental Biology-Plant, 2018, 54: 318-331 [35] Shi Y, Wang Y, Flowers TJ, et al. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology, 2013, 170: 847-853 [36] 李猛, 陈栋, 李秀妮, 等. 盐胁迫下外源褪黑素对烟草幼苗抗氧化特性和光合特性的影响. 中国农业科技导报, 2019, 21(2): 141-147 [37] 李嘉文, 麻冬梅, 苏立娜, 等. 外源褪黑素对盐胁迫下燕麦幼苗生长及抗氧化系统的影响. 草地学报, 2023, 31(2): 396-403 [38] 何秀丽, 王人民. 外源褪黑素对金线兰有效成分含量及抗氧化酶活性的影响. 浙江农业学报, 2023, 35(1): 58-66 [39] Galano A, Tan DX, Reiter RJ. On the free radical sca-venging activities of melatonin’s metabolites, AFMK and AMK. Journal of Pineal Research, 2013, 54: 245-257 [40] 宋雪飞, 甘淳丹, 赵海燕, 等. 叶面喷施外源褪黑素调控水稻幼苗耐盐性的浓度效应研究. 土壤学报, 2018, 55(2): 455-466 |