Chinese Journal of Applied Ecology ›› 2022, Vol. 33 ›› Issue (7): 1885-1892.doi: 10.13287/j.1001-9332.202207.006
• Special Features of biological soil crusts • Previous Articles Next Articles
A La-sa1,2,3, GAO Guang-lei1,2,3*, DING Guo-dong1,2,3, ZHANG Ying1,2,3, CAO Hong-yu1,2,3, DU Yu-jia1
Received:
2021-12-05
Accepted:
2022-04-27
Online:
2022-07-15
Published:
2023-01-15
A La-sa, GAO Guang-lei, DING Guo-dong, ZHANG Ying, CAO Hong-yu, DU Yu-jia. Eco-physiological functions of soil microbial biofilms: A review[J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1885-1892.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202207.006
[1] Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15: 579-590 [2] 杜宇佳, 高广磊, 陈丽华, 等. 呼伦贝尔沙区土壤细菌群落结构与功能预测. 中国环境科学, 2019, 39(11): 4840-4848 [3] Cai P, Sun X, Wu Y, et al. Soil biofilms: Microbial interactions, challenges, and advanced techniques for ex situ characterization. Soil Ecology Letters, 2019, 1: 85-93 [4] 孙晓洁, 高春辉, 黄巧云, 等. 自然环境中的多物种生物膜: 研究方法及社群相互作用. 农业资源与环境学报, 2017, 34(1): 6-14 [5] Velmourougane K, Prasanna R, Saxena AK. Agricul-turally important microbial biofilms: Present status and future prospects. Journal of Basic Microbiology, 2017, 57: 548-573 [6] Edwards SJ, Kjellerup BV. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 2013, 97: 9909-9921 [7] Caldwell DE. Microbial biofilms. Annual Review of Microbiology, 1995, 49: 711-745 [8] Sutherland IW. The biofilm matrix: An immobilized but dynamic microbial environment. Trends in Microbiology, 2001, 9: 222-227 [9] Flemming HC, Wingender J. The biofilm matrix. Nature Reviews Microbiology, 2010, 8: 623-633 [10] Røder HL, Srensen SJ, Burmlle M. Studying bacterial multispecies biofilms: Where to start? Trends in Micro-biology, 2016, 24: 503-513 [11] 戚韩英, 汪文斌, 郑昱, 等. 生物膜形成机理及影响因素探究. 微生物学通报, 2013, 40(4): 677-685 [12] Feng JS, Lamour G, Xue R, et al. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. International Journal of Food Microbiology, 2016, 238: 172-182 [13] Peterson BW, He Y, Ren Y, et al. Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiology Reviews, 2015, 39: 234-245 [14] 李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展. 中国抗生素杂志, 2020, 45(2): 113-121 [15] Ryan K, Ranjith R, Jennifer H, et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions. Frontiers in Microbiology, 2017, 8: 1-11 [16] Herath HM, Menikdiwela KR, Igalavithana AD, et al. Developed fungal-bacterial biofilms having nitrogen fixers: Universal biofertilizers for legumes and non-legumes// Bruijn FJ, ed. Biological Nitrogen Fixation. Somerset, NJ, USA: John Wiley & Sons, 2015: 1041-1046 [17] Overbeek LS, Saikkonen K. Impact of bacterial-fungal interactions on the colonization of the endosphere. Trends in Plant Science, 2016, 21: 230-242 [18] Swarnalakshmi K, Prasanna R, Kumar A, et al. Evalua-ting the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. European Journal of Soil Biology, 2013, 55: 107-116 [19] Hassan W, Hussain M, Bashir S, et al. ACC-deaminase and/or nitrogen fixing rhizobacteria and growth of wheat (Triticum aestivum L.). Journal of Soil Science and Plant Nutrition, 2015, 15: 115-132 [20] Burns RG, Stach J. Microbial ecology of soil biofilms: Substrate bioavailability, bioremediation and complexity. Developments in Soil Science, 2002, 28B: 17-48 [21] Billings N, Birjiniuk A, Tahoura TS, et al. Material properties of biofilms: A review of methods for understanding permeability and mechanics. Reports on Progress in Physics, 2015, 78: 036601 [22] 赖柏民, 汪美贞, 沈东升. 细菌群体感应“合作-欺骗”研究进展. 应用生态学报, 2017, 28(5): 1735-1742 [23] Seneviratne G, Jayasinghearachchi HS. A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil. Soil Biology and Biochemistry, 2005, 37: 1975-1978 [24] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用. 生态学报, 2015, 35(20): 18-25 [25] 滕泽栋, 李敏, 朱静. 解磷微生物对土壤磷资源利用影响的研究进展. 土壤通报, 2017, 48(1): 229-235 [26] Jayasinghearachchi HS, Seneviratne G. Fungal solubilization of rock phosphate is enhanced by forming fungal-rhizobial biofilms. Soil Biology and Biochemistry, 2006, 38: 405-408 [27] 任悦, 高广磊, 丁国栋, 等. 沙地樟子松人工林叶片-枯落物-土壤有机碳含量特征. 北京林业大学学报, 2018, 40(7): 36-44 [28] Zhao LN, Li XR, Wang ZR, et al. A new strain of Bacillus tequilensis CGMCC 17603 isolated from biological soil crusts: A promising sand-fixation agent for desertification control. Sustainability, 2019, 11: 6501 [29] 张铭, 蔡鹏, 吴一超, 等. 细菌胞外聚合物: 基于土壤生态功能的视角. 土壤学报, 2021, 59(2): 1-19 [30] Shahzad H. Rhizobacterial inoculation to quantify structural stability and carbon distribution in aggregates of sandy clay loam soil. Eurasian Soil Science, 2020, 53: 675-685 [31] 张霖琳, 金小伟, 王业耀. 土壤污染物的生态毒理效应和风险评估研究进展. 中国环境监测, 2020, 36(6): 5-13 [32] Mathivanan K, Chandirika JU, Mathimani T, et al. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicology and Environmental Safety, 2021, 208: 111567 [33] Meena M, Sonigra P, Yadav G. Biological-based me-thods for the removal of volatile organic compounds (VOCs) and heavy metals. Environmental Science and Pollution Research, 2021, 28: 1-24 [34] Xing YH, Luo XS, Liu S, et al. Synergistic effect of biofilm growth and cadmium adsorption via composi-tional changes of extracellular matrix in montmorillonite system. Bioresource Technology, 2020, 315: 123742 [35] Zeng W, Li F, Wu C, et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess and Biosystems Engineering, 2020, 43: 153-167 [36] Chang YW, Fragkopoulos AA, Marquez SM, et al. Biofilm formation in geometries with different surface curvature and oxygen availability. New Journal of Physics, 2015, 17: 1-10 [37] 陈保冬, 赵方杰, 张莘, 等. 土壤生物与土壤污染研究前沿与展望. 生态学报, 2015, 35(20): 6604-6613 [38] 王慧, 胡金星, 秦智慧, 等. 细菌对有机污染物的趋化性及其对降解的影响. 浙江大学学报: 农业与生命科学版, 2017, 43(6): 676-684 [39] Wu Y, Cai P, Jing X, et al. Soil biofilm formation enhances microbial community diversity and metabolic activity. Environment International, 2019, 132: 105116 [40] Antizar-Ladislao B, Katz S, Galil NI. Phenol remediation by biofilm developed in sand soil media. Water Science and Technology, 2000, 42: 99-104 [41] Duc HD, Oanh NT. Biodegradation of acetochlor and 2-methyl-6-ethylaniline by Bacillus subtilis and Pseudomonas fluorescens. Microbiology, 2019, 88: 729-738 [42] Savage VJ, Chopra I, O'Neill AJ. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resis-tance. Antimicrobial Agents and Chemotherapy, 2013, 57: 1986-1970 [43] 高春明. DDT降解质粒pDOD及其对土壤中残留DDTs降解的生物强化. 博士论文. 杭州: 浙江大学, 2011 [44] Alegbeleye OO, Opeolu BO, Jackson VA. Polycyclic aromatic hydrocarbons: A critical review of environmental occurrence and bioremediation. Environmental Management, 2017, 60: 1-26 [45] 刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展. 生态环境学报, 2020, 29(6): 1277-1284 [46] 李娜, 韩晓增, 尤孟阳, 等. 土壤团聚体与微生物相互作用研究. 生态环境学报, 2013, 22(9): 1625-1632 [47] 居炎飞, 邱明喜, 朱纪康, 等. 我国固沙材料研究进展与应用前景. 干旱区资源与环境, 2019, 33(10): 138-144 [48] 王小姣, 李梦雅, 王文丽, 等. 接种单细胞微生物对土壤团聚体形成及其稳定性的影响. 土壤通报, 2021, 52(2): 355-360 [49] 杜宇佳, 高广磊, 陈丽华, 等. 土壤微生物膜对风沙土固沙保水特性的影响. 农业工程学报, 2020, 36(17): 98-105 [50] Roberson EB, Firestone MK. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Applied & Environmental Microbiology, 1992, 58: 1284-1291 [51] Seneviratne G, Zavahir JS, Bandara WMMS, et al. Fungal-bacterial biofilms: Their development for novel biotechnological applications. World Journal of Microbiology & Biotechnology, 2008, 24: 739-743 [52] Seneviratne G, Jayasekara AP, Silva MD, et al. Deve-loped microbial biofilms can restore deteriorated conventional agricultural soils. Soil Biology and Biochemistry, 2011, 43: 1059-1062 [53] 张淑香, 张文菊, 沈仁芳, 等. 我国典型农田长期施肥土壤肥力变化与研究展望. 植物营养与肥料学报, 2015, 21(6): 1389-1393 [54] Yu MH, Ding GD, Gao GL, et al. Leaf temperature fluctuations of typical psammophytic plants and their application to stomatal conductance estimation. Forests, 2018, 9: 313-325 [55] 曹娜, 陈小荣, 贺浩华, 等. 幼穗分化期喷施磷钾肥对早稻抵御低温及产量和生理特性的影响. 应用生态学报, 2017, 28(11): 3562-3570 [56] 郭米山, 丁国栋, 高广磊, 等. 非生物逆境中外生菌根对宿主植物抗逆性的增强作用. 世界林业研究, 2019, 32(5): 15-21 [57] Waheed QA, Nasim SA. Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 2012, 43: 886-890 [58] Kasotia A, Varma A, Tuteja N, et al. Amelioration of soybean plant from saline-induced condition by exopolysaccharide producing Pseudomonas-mediated expression of high affinity K+-transporter (HKT1) gene. Current Science, 2016, 111: 1961-1967 [59] Yasmeen T, Ahmad A, Arif MS, et al. Biofilm forming rhizobacteria enhance growth and salt tolerance in sunflower plants by stimulating antioxidant enzymes activity. Plant Physiology and Biochemistry, 2020, 156: 242-256 [60] 严理, 夏承博, 温远光. 土壤原生病原体对森林植被及生态系统的影响. 世界林业研究, 2016, 29(5): 22-28 [61] Wang X, Mavrodi DV, Ke LF, et al. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microbial Biotechno-logy, 2015, 8: 404-418 [62] Ongena M, Jacques P. Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Micro-biology, 2008, 16: 115-125 |
[1] | GOU Guohua, FAN Jun, WANG Xi, ZHOU Mingxing, YANG Xueting. Soil quality evaluation of different land use patterns on the southern and northern Qinghai-Tibet Plateau based on minimal data set [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1360-1366. |
[2] | BAI Jinke, LI Xiaoyu, WANG Li. Variations of soil quality in the southern Qinghai-Tibet Plateau during 1980s to 2020s [J]. Chinese Journal of Applied Ecology, 2023, 34(5): 1367-1374. |
[3] | SHI Duopeng, YE Zizhuang, LI Huitong, LYU Shenqiang, WANG Linquan, ZHOU Chunju. Effects of combined application of biochar and nitrogen fertilizer on soil quality of summer maize-winter wheat system [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 442-450. |
[4] | WANG Yu, LI Hao, YAO Zhen-zhu, LIAO Qi, DU Tai-sheng. Effects of water and salt stresses on plant growth and xylem hydraulic properties of tomato [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 114-122. |
[5] | JIANG Cong-ze, SHOU Na, GAO Wei, MA Ren-shi, SHEN Yu-ying, YANG Xian-long. Comprehensive evaluation of soil quality of different land use types on the northeastern margin of the Qinghai-Tibet Plateau, China [J]. Chinese Journal of Applied Ecology, 2022, 33(12): 3279-3286. |
[6] | TENG Hui-ying, GENG Yan-lou, ZHANG Heng-shuo, ZHA Tong-gang. Assessment of soil quality under different land use types in the rocky mountain area of northern Hebei Province, China. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 3046-3054. |
[7] | WEN Guang-chao, SUN Shi-kui, LI Xing, XIE Hong-bo. Diagnosis of eco-environmental quality in the Keluke Lake basin, China [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2906-2914. |
[8] | CAO Jian-ting, FAN Zhi-yang, HUANG Jian-ming, CHEN Yang-fang, CHEN Zi-liang, WANG Wen-qing. Aerosol salt damage is the main problem of landscaping in the coastal areas of southern China [J]. Chinese Journal of Applied Ecology, 2021, 32(8): 2923-2930. |
[9] | LYU Jun, YU Cun. Screening and identification of an efficient phosphate-solubilizing Burkholderia sp. and its growth-promoting effect on Pinus massoniana seedling [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2923-2934. |
[10] | LI Qiang, LIU Guo-bin, YANG Jun-cheng, TUO Deng-feng, ZHANG Zheng. Construction and application of a new index for quantifying root erosion resistance: Root framework erosion resistance index [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 2955-2962. |
[11] | XU Jia-wen, SHI Fu-xi, ZHANG Chao-hui, WAN Song-ze, WU Pan-pan, LIU Shan-shan, MAO Rong. Difference in intra- and inter-specific competition of two endangered plant species (Toona ciliate var. pubescens and Taxus chinensis var. mairei)in the middle subtropical zone of China [J]. Chinese Journal of Applied Ecology, 2020, 31(1): 1-8. |
[12] | ZHENG Qi, WANG Hai-jiang, LYU Xin, DONG Tian-yu, SHI Xiao-yan, LIU Yue. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang, China [J]. Chinese Journal of Applied Ecology, 2018, 29(4): 1291-1301. |
[13] | ZHANG Peng-peng, PU Xiao-zhen, ZHANG Wang-feng. Soil quality assessment under different cropping system and straw management in farmland of arid oasis region. [J]. Chinese Journal of Applied Ecology, 2018, 29(3): 839-849. |
[14] | JIAO Long, CAI Xiao-ming, BIAN Lei, LUO Zong-xiu, LI Zhao-qun, XIN Zhao-jun, CHEN Zong-mao. Jasmonates: From induced plant anti-herbivore defensive reaction to growth-defense tradeoffs [J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3876-3890. |
[15] | LOU Yi, GUO Qiao, PENG Chu, SHI Meng-di, LI Hai-yang, LI Xiao, XUE Quan-hong, LAI Hang-xian. Effects of three Bacillus strains on growth promoting and rhizosphere soil microflora of tomato. [J]. Chinese Journal of Applied Ecology, 2018, 29(1): 260-268. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||