[1] Johnson RW, Dixon MA, Lee DR. Water relations of the tomato during fruit-growth. Plant, Cell and Environment, 1992, 15: 947-953 [2] Reuscher S, Akiyama M, Mori C, et al. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One, 2013, 8: e79052 [3] Davies JN, Hobson GE. The constituents of tomato fruit: The influence of environment, nutrition, and genotype. Critical Reviews in Food Science and Nutrition, 1981, 15: 205-280 [4] Guichard S, Bertin N, Leonardi C, et al. Tomato fruit quality in relation to water and carbon fluxes. Agronomie, 2001, 21: 385-392 [5] Van de Wal B, Van de Put H, Hanssens J, et al. Mo-delling the effects of osmotic stress on tomato fruit deve-lopment. Acta Horticulturae, 2017, 1154: 201-206 [6] VanIeperen W, Volkov VS, Van Meeteren U. Distribution of xylem hydraulic resistance in fruiting truss of tomato influenced by water stress. Journal of Experimental Botany, 2003, 54: 317-324 [7] Liu J, Kang S, Davies WJ, et al. Elevated [CO2] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems. Plant, Cell and Environment, 2020, 43: 563-578 [8] 肖怀娟, 李娟起, 王吉庆, 等. 亚低温与干旱胁迫对番茄植株水分传输和形态解剖结构的影响. 应用生态学报, 2020, 31(8): 2630-2636 [9] 张红霞, 袁凤辉, 关德新, 等. 维管植物木质部水分传输过程的影响因素及研究进展. 生态学杂志, 2017, 36(11): 3281-3288 [10] Windt CW, Gerkema E, Van As H. Most water in the tomato truss is imported through the xylem, not the phloem: A nuclear magnetic resonance flow imaging study. Plant Physiology, 2009, 151: 830-842 [11] Brodribb TJ. Xylem hydraulic physiology: The functional backbone of terrestrial plant productivity. Plant Science, 2009, 177: 245-251 [12] 李美琦, 姜在民, 赵涵, 等. 加杨水力学与生理特性对不同土壤水分条件响应研究. 植物生理学报, 2017, 53(4): 632-640 [13] 陆世通, 陈森, 李彦, 等. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系. 植物生态学报, 2021, 45(6): 659-669 [14] 杨启良, 张富仓, 刘小刚, 等. 不同滴灌方式和NaCl处理对苹果幼树生长和水分传导的影响. 植物生态学报, 2009, 33(4): 824-832 [15] Maherali H, Pockman WT, Jackson RB. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 2004, 85: 2184-2199 [16] Tyree MT, Zimmermann MH. Xylem Structure and the Ascent of Sap. Berlin, Germany: Springer-Verlag, 2013 [17] Krishna R, Karkute SG, Ansari WA, et al. Transgenic tomatoes for abiotic stress tolerance: Status and way ahead. 3 Biotech, 2019, 9: 143 [18] Schreiber SG, Hacke UG, Hamann A. Variation of xylem vessel diameters across a climate gradient: Insight from a reciprocal transplant experiment with a widespread boreal tree. Functional Ecology, 2015, 29: 1392-1401 [19] 周洪华, 李卫. 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 2015, 39(1): 81-91 [20] Eilmann B, Zweifel R, Buchmann N, et al. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiology, 2009, 29: 1011-1020 [21] Jia J, Liang Y, Gou T, et al. The expression response of plasma membrane aquaporins to salt stress in tomato plants. Environmental and Experimental Botany, 2020, 178: 104190 [22] 贾建华, 郭佳, 宫海军. 模拟干旱和盐胁迫下番茄的水分吸收和质膜水通道蛋白的表达响应. 中国园艺学会2018年学术年会, 青岛, 2018: 154 [23] Yang H, Shukla MK, Mao X, et al. Interactive regimes of reduced irrigation and salt stress depressed tomato water use efficiency at leaf and plant scales by affecting leaf physiology and stem sap flow. Frontiers in Plant Science, 2019, 10: 160-177 [24] Allen RG, Pereira LS, Raes D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO, 1998, 300: D05109 [25] Fulton A, Buchner R, Gilles C, et al. Rapid equilibration of leaf and stem water potential under field conditions in Almonds, Walnuts, and Prunes. HortTechnology, 2001, 11: 609-615 [26] Li H, Zhang X, Hou X, et al. Developmental and water deficit-induced changes in hydraulic properties and xylem anatomy of tomato fruit and pedicels. Journal of Experimental Botany, 2021, 72: 2741-2756 [27] Ho LC, Grange RI, Picken AJ. An analysis of the accumulation of water and dry matter in tomato fruit. Plant, Cell and Environment, 1987, 10: 157-162 [28] Chen J, Vercambre G, Kang S, et al. Fruit water content as an indication of sugar metabolism improves simulation of carbohydrate accumulation in tomato fruit. Journal of Experimental Botany, 2020, 71: 5010-5026 [29] 王玮, 李德全. 植物盐分胁迫与水分胁迫的异同. 植物生理学通讯, 2003, 39(5): 491-492 [30] Al-Harbi AR, Al-Omran AM, Alenazi MM, et al. Sali-nity and deficit irrigation influence tomato growth, yield and water use efficiency at different developmental stages. International Journal of Agriculture and Biology, 2015, 17: 241-250 [31] El-Mogy MM, Garchery C, Stevens R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato. Acta Agriculturae Scandinavica, Section B Soil and Plant Science, 2018, 68: 727-737 [32] Soriano D, Echeverría A, Anfodillo T, et al. Hydraulic traits vary as the result of tip-to-base conduit widening in vascular plants. Journal of Experimental Botany, 2020, 71: 4232-4242 [33] 周洪华, 李卫红, 木巴热克·阿尤普, 等. 荒漠河岸林植物木质部导水与栓塞特征及其对干旱胁迫的响应. 植物生态学报, 2012, 36(1): 19-29 [34] Lang A, Ryan KG. Vascular development and sap flow in apple pedicels. Annals of Botany, 1994, 74: 381-388 [35] Nobel PS. Biophysical Plant Physiology and Ecology. San Francisco, USA: WH Freeman and Company, 1983 [36] Vander WC, Sherwin HW, Pammenter NW. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytologist, 2000, 145: 51-59 [37] Olson ME, Anfodillo T, Gleason SM, et al. Tip-to-base xylem conduit widening as an adaptation: Causes, consequences, and empirical priorities. New Phytologist, 2021, 229: 1877-1893 [38] Rosell JA, Olson ME, Anfodillo T. Scaling of xylem vessel diameter with plant size: Causes, predictions, and outstanding questions. Current Forestry Reports, 2017, 3: 46-59 [39] 徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应. 中国生态农业学报, 2012, 20(8): 1059-1065 |