[1] 杨丽雯, 张永清, 张定一, 等. 山西省小麦生产的现状、问题与对策分析. 麦类作物学报, 2010, 30(6): 1154-1159 [2] Xie YK, Feng MC, Wang C, et al. Hyperspectral monitor on chlorophyll density in winter wheat (Triticum aestivum L.) under water stress. Agronomy Journal, 2020, 112: 3667-3676 [3] 姚云军, 秦其明, 张自力, 等. 高光谱技术在农业遥感中的应用研究进展. 农业工程学报, 2008, 24(7): 301-306 [4] 李玲, 余光辉, 曾富华. 水分胁迫下植物脯氨酸累积的分子机理. 华南师范大学学报: 自然科学版, 2003, 1(1): 126-134 [5] 李德全, 邹琦, 程炳嵩. 植物在逆境下的渗透调节. 山东农业大学学报, 1989, 35(2): 78-83 [6] Liang XW, Zhang L, Kumar NS, et al. Proline mechanisms of stress survival. Antioxidants & Redox Signaling, 2013, 19: 998-1011 [7] 杨书运, 严平, 梅雪英. 水分胁迫对冬小麦抗性物质可溶性糖与脯氨酸的影响. 中国农学通报, 2007, 23(12): 229-233 [8] Ghaffari H, Tadayon MR, Bahador M, et al. Investigation of the proline role in controlling traits related to sugar and root yield of sugar beet under water deficit conditions. Agricultural Warer Menagement, 2021, 243: 106448 [9] Shen TT, Zhang C, Liu F, et al. High-throughput screening of free proline content in rice leaf under cadmium stress using hyperspectral imaging with chemome-trics. Sensors, 2020, 20: 3229 [10] Stenberg S, Rossel RAV, Mouazen AM, et al. Visible and near infrared spectroscopy in soil science. Advances in Agronomy, 2010, 107: 163-215 [11] 杜培军, 王小美, 谭琨, 等. 利用流形学习进行高光谱遥感影像的降维与特征提取. 武汉大学学报: 信息科学版, 2011, 36(2): 148-152 [12] 张连蓬. 基于投影寻踪和非线性主曲线的高光谱遥感图像特征提取及分类研究. 硕士论文. 济南: 山东科技大学, 2003 [13] Cochrane M. Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote, 2000, 21: 2075-2087 [14] 王超. 基于化学计量学方法的冬小麦长势光谱信息提取及监测研究. 硕士论文. 晋中: 山西农业大学, 2016 [15] Burnett AC, Serbin SP, Davidson KJ, et al. Detection of the metabolic response to drought stress using hyperspectral reflectance. Journal of Experimental Botany, 2021, 72: 6474-6489 [16] 王利民, 刘佳, 邓辉, 等. 我国农业干旱遥感监测的现状与展望. 中国农业资源与区划, 2008, 29(6): 4-8 [17] Debacker S, Kempeneers P, Debruyn W, et al. A band selection technique for spectral classification. IEEE Geoscience & Remote Sensing Letters, 2005, 2: 319-323 [18] Tschannerl J, Ren J, Yue P, et al. MIMR-DGSA: unsupervised hyperspectral band selection based on information theory and a modified discrete gravitational search algorithm. Information Fusion, 2019, 51: 189-200 [19] 高洪智, 卢启鹏, 丁海泉, 等. 基于连续投影算法的土壤总氮近红外特征波长的选取. 光谱学与光谱分析, 2009, 29(11): 2951-2954 [20] El-Hendawy S, Al-Suhaibani N, Alotaibi M, et al. Estimating growth and photosynthetic properties of wheat grown in simulated saline field conditions using hyperspectral reflectance sensing and multivariate analysis. Scientific Reports, 2019, 9: 16473 [21] Singh CB, Jayas DS, Paliwal J, et al. Detection of insect-damaged wheat kernels using near-infrared hyperspectral imaging. Journal of Stored Products Research, 2008, 45: 151-158 [22] Hartemink AE, McBratney A, de Lourdes M. Digital Soil Mapping with Limited Data. New York, Dordrecht: Springer, 2008 [23] Chong IG, Jun CH. Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent, 2005, 78: 103-112 [24] Araújo MCU, Saldanha TCB, Galvao RKH, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent, 2001, 57: 65-73 [25] Ohtani K. Bootstrapping R2 and adjusted R2 in regression analysis. Economic Modelling, 2000, 17: 473-483 [26] Klaas N, Faber M. Estimating the uncertainty in estimates of root mean square error of prediction: Application to determining the size of an adequate test set in multivariate calibration. Chemometrics and Intelligent, 1999, 49: 79-89 [27] Klein GA. A recognition-primed decision (RPD) model of rapid decision making// Klein GA, Orasanu J, Calderwood R, eds. Decision Making in Action Models & Methods. Norwood, NJ, USA: Ablex Publishing Corporation, 1993: 138-147 [28] Chang CW, Laird DA. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 2002, 167: 110-116 [29] 谷艳芳, 丁圣彦, 陈海生, 等. 干旱胁迫下冬小麦(Triticum aestivum)高光谱特征和生理生态响应. 生态学报, 2008, 28(6): 2690-2697 [30] Zarco-Tejada PJ, Rueda CA, Ustin SL. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 2003, 85: 109-124 [31] Tambussi EA, Bartoli CG, Beltrano J, et al. Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum). Physiologia Plantarum, 2010, 108: 398-404 [32] Delegido J, Verrelst J, Meza CM, et al. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, 2013, 46: 42-52 [33] Goswami J, Das A, Sarma KK, et al. Red edge position (REP), an indicator for crop stress detection: Implication on rice (Oryza sativa L.). International Journal of Environment and Climate Change, 2021, 11: 88-96 [34] Chandel NS, Rajwade YA, Golhani K, et al. Canopy spectral reflectance for crop water stress assessment in wheat (Triticum aestivum L.). Irrigation and Drainage, 2020, 70: 321-331 |