Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (1): 275-288.doi: 10.13287/j.1001-9332.202401.022
• Reviews • Previous Articles
LIU Yisheng1,2, HOU Peng2*, WANG Ping1, ZHU Jian1
Received:
2023-07-07
Accepted:
2023-11-28
Online:
2024-01-18
Published:
2024-03-21
LIU Yisheng, HOU Peng, WANG Ping, ZHU Jian. Research advance on quantitative assessment methods of ecosystem water conservation service functions[J]. Chinese Journal of Applied Ecology, 2024, 35(1): 275-288.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202401.022
[1] 侯鹏, 王桥, 申文明, 等. 生态系统综合评估研究进展: 内涵, 框架与挑战. 地理研究, 2015, 34(10): 1809-1823 [2] 孙文义, 邵全琴, 刘纪远. 黄土高原不同生态系统水土保持服务功能评价. 自然资源学报, 2014, 29(3): 365-376 [3] 龚诗涵, 肖洋, 郑华, 等. 中国生态系统水源涵养空间特征及其影响因素. 生态学报, 2017, 37(7): 2455-2462 [4] 侯鹏, 翟俊, 曹巍, 等. 国家重点生态功能区生态状况变化与保护成效评估: 以海南岛中部山区国家重点生态功能区为例. 地理学报, 2018, 73(3): 429-441 [5] 贾雨凡, 杨勤丽, 胡非池, 等. 变化环境下的水源涵养能力评估研究进展. 水利水运工程学报, 2022(1): 37-47 [6] 闫俊华. 森林水文学研究进展. 热带亚热带植物学报, 1999, 7(4): 347-356 [7] 莫尔察诺夫 AA, 杨山. 森林的水源涵养作用. 林业科学, 1960, 6(2): 161-174 [8] 片冈顺, 王丽. 水源林研究述评. 水土保持科技情报, 1990(4): 44-46 [9] 孙立达, 朱金兆. 水土保持林体系综合效益研究与评价. 北京: 中国科学技术出版杜, 1995: 372 [10] 张彪, 李文华, 谢高地, 等. 森林生态系统的水源涵养功能及其计量方法. 生态学杂志, 2009, 28(3): 529-534 [11] 吕一河, 胡健, 孙飞翔, 等. 水源涵养与水文调节: 和而不同的陆地生态系统水文服务. 生态学报, 2015, 35(15): 5191-5196 [12] 周佳雯, 高吉喜, 高志球, 等. 森林生态系统水源涵养服务功能解析. 生态学报, 2018, 38(5): 1679-1686 [13] 刘效东, 张卫强, 冯英杰, 等. 森林生态系统水源涵养功能研究进展与展望. 生态学杂志, 2022, 41(4): 784-791 [14] 王先棒, 贺康宁, 董喆, 等. 北川河流域典型林型水源涵养能力评价. 中国水土保持科学, 2017, 15(5): 94-102 [15] 程唱, 贺康宁, 俞国峰, 等. 干旱半干旱区不同林型人工林水源涵养能力比较研究. 生态学报, 2021, 41(5): 1979-1990 [16] 司今, 韩鹏, 赵春龙. 森林水源涵养价值核算方法评述与实例研究. 自然资源学报, 2011, 26(12): 2100-2109 [17] 刘业轩, 石晓丽, 史文娇. 福建省森林生态系统水源涵养服务评估: InVEST模型与meta分析对比. 生态学报, 2021, 41(4): 1349-1361 [18] 俞恩旭, 张明芳, 徐亚丽, 等. 区域森林水源涵养功能评价模型的开发与应用. 中国水土保持科学, 2023, 21(1): 119-127 [19] 曹飞, 肖如林, 付卓, 等. 江西省水源涵养量动态变化遥感监测与分析. 环境与可持续发展, 2016, 41(6): 210-212 [20] 张三焕, 赵国柱, 田允哲, 等. 长白山珲春林区森林资源资产生态环境价值的评估研究. 延边大学学报, 2001, 27(2): 126-134 [21] 张彪, 李文华, 谢高地, 等. 北京市森林生态系统的水源涵养功能. 生态学报, 2008, 28(11): 5619-5624 [22] Xu J, Yu XY, Xie GD. Analysis on the spatio-temporal patterns of water conservation services in Beijing. Journal of Resources and Ecology, 2019, 10: 362-372 [23] 沈钰仟, 肖燚, 欧阳志云, 等. 基于生态系统质量的水源涵养服务评估:以西南五省为例. 山地学报, 2020, 38(6): 816-828 [24] 聂忆黄. 基于地表能量平衡与SCS模型的祁连山水源涵养能力研究. 地学前缘, 2010, 17(3): 269-275 [25] 孙翔宇, 王立辉, 李扬, 等. 湖北大别山区生态系统水源涵养功能遥感评估. 长江流域资源与环境, 2023, 32(3): 487-497 [26] 王云飞, 叶爱中, 乔飞, 等. 水源涵养内涵及估算方法综述. 南水北调与水利科技, 2021, 19(6): 1041-1071 [27] Mockus V. National Engineering Handbook. Washington DC: US Soil Conservation Service, 1964 [28] Mishra SK, Singh VP. SCS-CN method. Part I: Derivation of SCS-CN-based models. Acta Geophysica Polonica, 2002, 50: 457-477 [29] Al-Ghobari H, Dewidar AZ. Integrating GIS-based MCDA techniques and the SCS-CN method for identifying potential zones for rainwater harvesting in a semi-arid area. Water, 2021, 13: 704 [30] 陈正维, 刘兴年, 朱波. 基于 SCS-CN模型的紫色土坡地径流预测. 农业工程学报, 2014, 30(7): 72-81 [31] 吴艾璞, 王晓燕, 黄洁钰, 等. 基于前期雨量和降雨历时的SCS-CN模型改进. 农业工程学报, 2021, 37(22): 85-94 [32] 张海博. 基于SEBS与SCS模型的区域水源涵养量估算研究. 博士论文. 北京: 中国环境科学研究院, 2012 [33] Su Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 2002, 6: 85-100 [34] Karn AL, Lal M, Mishra S, et al. Evaluation of SCS-CN inspired models and their comparison. Journal of Indian Water Resources Society, 2016, 36: 19-27 [35] Verma S, Singh P, Mishra SK, et al. Activation soil moisture accounting (ASMA) for runoff estimation using soil conservation service curve number (SCS-CN) me-thod. Journal of Hydrology, 2020, 589: 125114 [36] Sandholt I, Rasmussen K, Andersen J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 2002, 79: 213-224 [37] 陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述. 地球科学进展, 2012, 27(11): 1192-1203 [38] Li Z, Wang Y, Zhou Q, et al. Spatiotemporal variability of land surface moisture based on vegetation and tempe-rature characteristics in northern Shaanxi Loess Plateau, China. Journal of Arid Environments, 2008, 72: 974-985 [39] 王秀君, 陈健. 基于LST-EVI特征空间的土壤水分含量反演. 遥感技术与应用, 2014, 29(1): 46-53 [40] 赵杰鹏, 张显峰, 廖春华, 等. 基于TVDI的大范围干旱区土壤水分遥感反演模型研究. 遥感技术与应用, 2011, 26(6): 742-750 [41] Arnold JG, Williams JR, Maidment DR. Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering, 1995, 121: 171-183 [42] Refsgaard JC. Terminology, modelling protocol and classification of hydrological model codes// Abbott MB, Refsgaard JC, eds. Distributed Hydrological Modelling. Amsterdam: Kluwer Academic Publishers, 1996: 17-39 [43] 王中根, 刘昌明, 左其亭, 等. 基于DEM的分布式水文模型构建方法. 地理科学进展, 2002, 21(5): 430-439 [44] 王中根, 刘昌明, 黄友波. SWAT模型的原理、结构及应用研究. 地理科学进展, 2003, 22(1): 79-86 [45] 邱国玉, 尹婧, 熊育久, 等. 北方干旱化和土地利用变化对泾河流域径流的影响. 自然资源学报, 2008, 23(2): 211-218 [46] Yang J, Reichert P, Abbaspour KC, et al. Hydrological modelling of the Chaohe Basin in China: Statistical mo-del formulation and Bayesian inference. Journal of Hydrology, 2007, 340: 167-182 [47] Shen Z, Chen L, Chen T. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: A case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences, 2012, 16: 121-132 [48] Li Z, Shao Q, Xu Z, et al. Analysis of parameter uncertainty in semi-distributed hydrological models using bootstrap method: A case study of SWAT model applied to Yingluoxia watershed in northwest China. Journal of Hydrology, 2010, 385: 76-83 [49] 林炳青, 陈莹, 陈兴伟. SWAT模型水文过程参数区域差异研究. 自然资源学报, 2013, 28(11): 1988-1999 [50] Srinivasan R, Arnold J, Jones C. Hydrologic modelling of the United States with the soil and water assessment tool. International Journal of Water Resources Development, 1998, 14: 315-325 [51] Jha M, Gassman PW, Secchi S, et al. Effect of watershed subdivision on swat flow, sediment, and nutrient predictions. Journal of the American Water Resources Association, 2004, 40: 811-825 [52] Patil A, Ramsankaran R. Improving stream flow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations. Journal of Hydrology, 2017, 555: 683-696 [53] Krysanova V, Wechsung F, Arnold J, et al. SWIM (Soil and Water Integrated Model) User Manual (Version SWIM-8). Potsdam: Potsdam Institute for Climate Impact Research, 2000: 25-26 [54] 杨志远, 高超, 臧淑英, 等. SWIM模型在东北黑土区流域的适用性评价: 以乌裕尔河中上游流域为例. 地理学报, 2017, 72(3): 457-470 [55] 高超, 陆苗, 姚梦婷, 等. SWIM水文模型在王家坝地区的适用性评估. 水土保持通报, 2018, 38(1): 152-159 [56] 周一飞, 陈慧颖, 张淑兰, 等. 基于SWIM模型模拟气候变化对青海湖布哈河流域水文过程的影响. 北京师范大学学报, 2017, 53(2): 208-214 [57] 张伟, 杨新兵, 张汝松, 等. 冀北山地不同林分枯落物及土壤的水源涵养功能评价. 水土保持通报, 2011, 31(3): 208-212 [58] 程唱, 贺康宁, 俞国峰. 干旱半干旱区不同林型人工林水源涵养能力比较研究. 生态学报, 2021, 41(5): 1979-1990 [59] 张庆费, 周晓峰. 黑龙江省汤旺河和呼兰河流域森林对河川年径流量的影响. 植物资源与环境, 1999, 8(1): 23-28 [60] 侯晓臣, 孙伟, 李建贵, 等. 森林生态系统水源涵养能力计量方法研究进展与展望. 干旱区资源与环境, 2018, 32(1): 121-127 [61] Moreira M, Fonseca C, Vergílio M, et al. Spatial assessment of habitat conservation status in a Macaronesian Island based on the InVEST model: A case study of Pico Island (Azores, Portugal). Land Use Policy, 2018, 78: 637-649 [62] 余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估. 林业科学, 2012, 48(10): 1-5 [63] 刘菊, 傅斌, 张成虎, 等. 基于InVEST模型的岷江上游生态系统水源涵养量与价值评估. 长江流域资源与环境, 2019, 28(3): 577-585 [64] 刘宥延, 刘兴元, 张博, 等. 基于InVEST模型的黄土高原丘陵区水源涵养功能空间特征分析. 生态学报, 2020, 40(17): 6161-6170 [65] 田义超, 梁铭忠. 黄土台塬区土地利用/覆被变化定量研究:以陕西省咸阳台塬区为例. 干旱区研究, 2013, 30(3): 563-569 [66] 刘宁, 孙鹏森, 刘世荣, 等 . WASSI-C 生态水文模型响应单元空间尺度的确定: 以杂古脑流域为例. 植物生态学报, 2013, 37(2): 132-141 [67] 侯晓臣, 孙伟, 李建贵, 等. WaSSI-C模型在焉耆盆地的适用性改进与应用. 甘肃农业大学学报, 2019, 54(3): 108-116 [68] 王小辣, 段凯, 韦林, 等. 基于WaSSI模型的珠江流域水-碳耦合模拟. 应用生态学报, 2022, 33(5): 1377-1386 [69] Chen JM, Chen X, Ju W, et al. Distributed hydrological model for mapping evapotranspiration using remote sen-sing inputs. Journal of Hydrology, 2005, 305: 15-39 [70] 崔越, 张利华, 吴宗钒, 等. 基于BEPS-Terrainlab v2.0模型鄂西犟河流域1999—2016年蒸散发模拟分析. 华中师范大学学报, 2020, 54(1): 140-148 [71] 杨金明. 基于分布式水文模型的森林水源涵养功能评价. 博士论文. 哈尔滨: 东北林业大学, 2014 [72] 张亦汉, 黎夏, 刘小平, 等. 耦合遥感观测和元胞自动机的城市扩张模拟. 遥感学报, 2013, 17(4): 872-886 [73] 王晓学, 李叙勇, 莫菲, 等. 基于元胞自动机的森林水源涵养量模型新方法:概念与理论框架. 生态学报, 2010, 30(20): 5491-5500 [74] 孔凡哲, 宋晓猛, 占车生, 等. 水文模型参数敏感性快速定量评估的RSMSobol方法. 地理学报, 2011, 66(9): 1270-1280 [75] 林峰, 陈兴伟, 姚文艺, 等. 基于SWAT模型的森林分布不连续流域水源涵养量多时间尺度分析. 地理学报, 2020, 75(5): 1065-1078 [76] Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics, 1991, 33: 161-174 [77] 曾莉, 李晶, 李婷, 等. 基于贝叶斯网络的水源涵养服务空间格局优化. 地理学报, 2018, 73(9): 1809-1822 [78] 王辉源, 宋进喜, 孟清. 秦岭水源涵养功能解析. 水土保持学报, 2020, 34(6): 211-218 [79] 苟娇娇, 缪驰远, 段青云. 水文模型参数敏感性分析-优化-区域化方法研究进展. 地理科学进展, 2022, 41(7): 1338-1348 [80] 李莹莹, 马晓双, 祁国华, 等. 基于参数本地化InVEST模型的安徽省水源涵养功能研究. 长江流域资源与环境, 2022, 31(2): 313-325 [81] Tallis HT, Ricketts T, Guerry AD, et al. InVEST 2.1 Beta User’s Guide. Stanford: The Natural Capital Project, 2003: 80-81 [82] 李盈盈, 刘康, 胡胜, 等. 陕西省子午岭生态功能区水源涵养能力研究. 干旱区地理, 2015, 38(3): 636-642 [83] Xu X, Liu W, Scanlon BR, et al. Local and global factors controlling water-energy balances within the Budyko framework. Geophysical Research Letters, 2013, 40: 6123-6129 [84] Cai B, Yu R. Advance and evaluation in the long time series vegetation trends research based on remote sen-sing. Journal of Remote Sensing, 2009, 13: 1170-1186 [85] Tošić I. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theoretical and Applied Climatology, 2004, 77: 47-56 [86] Nash JE, Sutcliffe JV. River flow forecasting through conceptual models. Part Ⅰ: A discussion of principles. Journal of Hydrology, 1970, 10: 282-290 [87] Nearing M, Liu B, Risse L, et al. Curve numbers and green: AMPT effective hydraulic conductivities. Journal of the American Water Resources Association, 1996, 32: 125-136 [88] Xiao B, Wang QH, Fan J, et al. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity. Pedosphere, 2011, 21: 738-749 [89] 赵武成, 买小虎, 王琦, 等. 基于SCS-CN模型的黄土高原丘陵区坡地微型集雨垄垄面径流量预测. 生态学杂志, 2022, 41(1): 199-208 |
[1] | CAO Huayan, MIAO Zheng, HAO Yuanshuo, DONG Lihu. Stem moisture content prediction model for Larix olgensis based on beta regression. [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 587-596. |
[2] | HU Ailian, YANG Juan, LIU Baolin, ZOU Yu. Prediction on the changes in potential suitable areas for mangroves along the coast of Guangxi and the threat from Spartina alterniflora invasion [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 669-677. |
[3] | LI Xiangling, CHEN Fengxian, CHEN Xijuan. Prediction of atrazine degradation in soil based on XGBoost model [J]. Chinese Journal of Applied Ecology, 2024, 35(3): 789-796. |
[4] | CAO Xiaomei, MIAO Zheng, HAO Yuanshuo, DONG Lihu. Height-diameter model of broad-leaved mixed forest based on species classification in Maoershan, Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 307-320. |
[5] | LI Jiayu, SHI Xiuzhen, LI Shuaijun, WANG Zhenyu, WANG Jianqing, ZOU Bingzhang, WANG Sirong, HUANG Zhiqun. Effects of stand ages on soil enzyme activities in Chinese fir plantations and natural secondary forests [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 339-346. |
[6] | ZUO Yuzhu, PAN Chengzhong, MA Yongxing, MA Lan. Rainfall-runoff partitioning in small watersheds of different vegetation types in the loess area based on hydrogen and oxygen isotope tracing [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 399-406. |
[7] | GAN Wenjing, MO Shangxuan, ZHANG Jianhong, SONG Xianwei, XIAN Jinmei, YANG Lu, NONG Haiqin. Water conservation pattern of Fangcheng River Basin in Beibu Gulf and its response to precipitation [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 407-414. |
[8] | LU Chang, CAI Xueqin, HAO Canshu, LIU Yuzhen, WANG Zhiyu, MA Ya'nan. Ecosystem service tradeoff and synergistic relationship in the Yellow River Delta High-Efficiency Eco-Economic Zone [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 457-468. |
[9] | YUAN Jiayu, Xiong Li, WU Zhiwei, ZHU Shihao, KANG Ping, LI Shun. Characteristics of pine wood nematode disease in Nankang District, Ganzhou, Jiangxi Province, China [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 507-515. |
[10] | WANG Fei, ZHOU Zihan, HAN Dongrui, WANG Meng, WEI Qinggang, LUO Xiubin, GAO Rui, ZHANG Zhuoran, FANG Jingchun. Research progress in parameterizing irrigation and fertilization in land surface model [J]. Chinese Journal of Applied Ecology, 2024, 35(2): 543-554. |
[11] | XIAO Chen, TIAN Dongyuan, MA Rong, DONG Lingbo. Compatibility predictive model for regeneration quantities of Larix gmelinii natural forest in Daxing’anling Mountains, China [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2345-2354. |
[12] | SUN Long, MA Linggan, GUO Yan, FAN Jiale, CHEN Boxuan, HU Tongxin. Prediction model of water content in surface dead fuel based on convolution neural network and meteoro-logical factors regression [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2453-2461. |
[13] | QI Yuting, ZHANG Ping, LIU Lei, MA Xuenan, WANG Huan, ZHAO Juan. Multi-scenario optimization of land use structure and prediction of ecosystem service value in Guanzhong Plain urban agglomeration [J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2507-2517. |
[14] | REN Menglin, GUO Yan, CHEN Boxuan, FAN Jiale, HU Tongxin, SUN Long. Prediction models of fire spread rate of Pinus koraiensis plantation's surface fuel [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2091-2100. |
[15] | XING Yankuo, KANG Bin, LU Zhichuang, GAO Xianggang, WANG Zhen, TIAN Jiashen. Suitable habitat of Lepidochelys olivacea and the changes under climate change [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2267-2273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||