[1] Crawford RL. Plant structures: Xylem structure and the ascent of sap. Science, 1983, 4: 500-501 [2] Brodribb TJ, Feild TS, Sack L. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 2010, 37: 488-498 [3] Lucas WJ, Groover A, Lichtenberger R, et al. The plant vascular system: Evolution, development and functions. Journal of Integrative Plant Biology, 2013, 55: 294-388 [4] Pace MR, Gerolamo CS, Onyenedum JG, et al. The wood anatomy of Sapindales: Diversity and evolution of wood characters. Brazilian Journal of Botany, 2022, 45: 283-340 [5] Liu H, Ye Q, Gleason SM, et al. Weak tradeoff between xylem hydraulic efficiency and safety: Climatic seasonality matters. New Phytologist, 2021, 229: 1440-1452 [6] 殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异. 应用生态学报, 2018, 29(2): 352-360 [7] Kitin P, Funada R. Earlywood vessels in ring-porous trees become functional for water transport after bud burst and before the maturation of the current year lea-ves. IAWA Journal, 2016, 37: 315-331 [8] Davis SD, Sperry JS, Hacke UG. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 1999, 86: 1367-1372 [9] 朱良军, 李宗善, 王晓春. 树轮木质部解剖特征及其与环境变化的关系. 植物生态学报, 2017, 41(2): 238-251 [10] 郑勤莹, 张国帅, 赵彬清, 等. 不同坡位水曲柳木质部解剖特征及其与气候关系. 应用生态学报, 2021, 32(10): 3428-3436 [11] Eilmann B, Zweifel R, Buchmann N, et al. Drought alters timing, quantity, and quality of wood formation in Scots pine. Journal of Experimental Botany, 2011, 62: 2763-2771 [12] 贺清智, 叶茂, 潘晓婷, 等. 塔里木河下游胡杨木质部形成过程及其对水热因子的响应. 应用生态学报, 2023, 34(5): 1244-1252 [13] Fonti P, von Arx G, García-González I, et al. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytologist, 2010, 185: 42-53 [14] 郭霞丽, 余碧云, 梁寒雪, 等. 结合微树芯方法的树木生长生理生态学研究进展. 植物生态学报, 2017, 41(7): 795-804 [15] Giantomasi MA, Juñent FAR, Villagra PE, et al. Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees, 2008, 23: 117-126 [16] Gärtner H, Lucchinetti S, Schweingruber FH. New perspectives for wood anatomical analysis in dendroscien-ces: The GSL1-microtome. Dendrochronologia, 2014, 32: 47-51 [17] Carrer M, von Arx G, Castagneri D, et al. Distilling allometric and environmental information from time series of conduit size: The standardization issue and its relationship to tree hydraulic architecture. Tree Physiology, 2015, 35: 27-33 [18] 李万兆, 石江涛. 基于多维度X-ray CT技术的木材科学研究进展. 世界林业研究, 2021, 34(2): 39-43 [19] Robb RA, Ritman EL. High speed synchronous volume computed tomography of the heart. Radiology, 1979, 133: 655-661 [20] Jackson DF, Hawkes DJ. X-ray attenuation coefficients of elements and mixtures. Physics Reports, 1981, 70: 169-233 [21] 黎玲, 金恒, 刘杰, 等. 基于工业CT图像的自适应三维网格模型重建. 光学学报, 2023, 43(3): 243-252 [22] 王启明, 车爱兰. 基于CT探测技术的不良地质构造三维网格模型重构方法. 岩石力学与工程学报, 2019, 38(6): 1222-1232 [23] 司永胜, 曹珊珊, 张晓雪, 等. 基于CT图像的苹果苦痘病与磕碰伤识别. 农业机械学报, 2021, 52(10): 377-384 [24] 彭冠云, 江泽慧, 刘杏娥, 等. 木材、竹材密度的CT技术检测. 光谱学与光谱分析, 2012, 32(7): 1935-1938 [25] Brodersen CR. Visualizing wood anatomy in three dimensions with high-resolution X-ray Micro-tomography (MCT): A review. IAWA Journal, 2013, 34: 408-424 [26] Scott AC, Galtier J, Gostling NJ, et al. Scanning electron microscopy and synchrotron radiation X-ray tomographic microscopy of 330 million year old charcoalified seed fern fertile organs. Microscopy and Microanalysis, 2009, 15: 166-173 [27] Koddenberg T, Wentzel M, Militz H. Volumetric estimate of bordered pits in Pinus sylvestris based on X-ray tomography and light microscopy imaging. Micron, 2019, 124: 102704 [28] Ma LY, Meng QL, Jiang XM, et al. Spatial organization and connectivity of wood rays in Pinus massoniana xylem based on high-resolution μCT-assisted network analysis. Planta, 2023, 258: 28 [29] Lintunen A, Salmon Y, Hölttä T, et al. Inspection of gas bubbles in frozen Betula pendula xylem with micro-CT: Conduit size, water status and bark permeability affect bubble characteristics. Physiologia Plantarum, 2022, 174: e13749 [30] Brodersen CR, Choat B, Chatelet DS, et al. Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). Ameri-can Journal of Botany, 2013, 100: 314-321 [31] Suuronen JP, Peura M, Fagerstedt K, et al. Visualizing water-filled versus embolized status of xylem conduits by desktop X-ray microtomography. Plant Methods, 2013, 9: 11 [32] Vuerich M, Petrussa E, Boscutti F, et al. Contrasting responses of two grapevine cultivars to drought: The role of non-structural carbohydrates in xylem hydraulic reco-very. Plant and Cell Physiology, 2023, 64: 920-932 [33] Wang F, Francus P. A technical note on the tree-ring measurement using CoreTom-μCT. Québec: INRS, Centre Eau Terre Environment, 2023 [34] De Mil T, Vannoppen A, Beeckman H, et al. A field-todesktop toolchain for X-ray CT densitometry enables tree ring analysis. Annals of Botany, 2016, 117: 1187-1196 [35] Van den Bulcke J, Boone MA, Dhaene J, et al. Advanced X-ray CT scanning can boost tree ring research for earth system sciences. Annals of Botany, 2019, 124: 837-847 [36] 刘玉佳, 朱良军, 苏金娟, 等. 模拟降水减少对帽儿山地区兴安落叶松径向生长的影响. 生态学报, 2015, 35(13): 4527-4537 [37] Liang W, Heinrich I, Simard S, et al. Climate signals derived from cell anatomy of Scots pine in NE Germany. Tree Physiology, 2013, 33: 833-844 [38] Mayo S, Chen F, Evans R. Micron-scale 3D imaging of wood and plant microstructure using high-resolution X-ray phase-contrast microtomography. Journal of Structu-ral Biology, 2010, 171: 182-188 [39] Trtik P, Dual J, Keuneke D, et al. 3D imaging of microstructure of spruce wood. Journal of Structural Biology, 2007, 159: 46-55 [40] Koddenberg T, Militz H. Morphological imaging and quantification of axial xylem tissue in Fraxinus excelsior L. through X-ray micro-computed tomography. Micron, 2018, 111: 28-35 [41] Wason J, Bouda M, Lee EF, et al. Xylem network connectivity and embolism spread in grapevine (Vitis vini-fera L.). Plant Physiology, 2021, 186: 373-387 [42] Meng Q, Fu F, Wang J, et al. Ray traits of juvenile wood and mature wood: Pinus massonia and Cunninghamia lanceolata. Forests, 2021, 12: 1277 [43] Steffenrem A, Kvaalen H, Dalen KS, et al. A high-throughput X-ray-based method for measurements of relative wood density from unprepared increment cores from Picea abies. Scandinavian Journal of Forest Research, 2014, 29: 506-514 [44] Brodersen CR, McElrone AJ, Choat B, et al. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiology, 2013, 161: 1820-1829 [45] Bush SE, Pataki DE, Hultine KR, et al. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees. Oecologia, 2008, 156: 13-20 [46] Gärtner H, Cherubini P, Fonti P, et al. A technical perspective in modern tree-ring research: How to overcome dendroecological and wood anatomical challenges. Journal of Visualized Experiments, 2015, 97: e52337 [47] Tomasella M, Petruzzellis F, Natale S, et al. Detecting and quantifying xylem embolism by synchrotron: Based X-ray Micro-CT. Methods in Molecular Biology, 2024, 2722: 51-63 [48] Pratt RB, Jacobsen AL, Meinzer F. Identifying which conduits are moving water in woody plants: A new HRCT-based method. Tree Physiology, 2018, 38: 1200-1212 |