Loading...
Welcome to Chinese Journal of Applied Ecology! Today is Share:

Table of Content

    18 May 2024, Volume 35 Issue 5
    Special Features of Dendroecology (Special Feature Organizer: LYU Lixin)
    Responses of radial growth of Fraxinus mandshurica from different provenances to climate at Maoershan in Northeast China
    DU Yingjun, LI Shijie, WANG Li, YANG Shuai, JIA Xinying, TIAN Guangyu, ZENG Fansuo, XIN Ying
    2024, 35(5):  1159-1168.  doi:10.13287/j.1001-9332.202405.004
    Asbtract ( 383 )   PDF (4462KB) ( 42 )  
    To understand the responses of radial growth of Fraxinus mandshurica from different provenances to climatic factors, we used the dendrochronological method to establish the standard chronologies of F. mandshurica from 20 provenances in Maoershan provenance test forest, and analyzed the differences in radial growth and their correlation with climate factors. The results showed that the overall trend of F. mandshurica chronologies from 20 provenances was generally similar. There were differences in growth amplitude, with the average radial growth of F. mandshurica from Dailing, Lushuihe and Sanchazi being the highest. The radial growth of F. mandshurica from 20 provenances was significantly positively correlated with the highest temperature in July and the average temperature in July except for Huinan. The radial growth of F. mandshurica from 14 provenances was significantly positively correlated with the precipitation in August. The radial growth of F. mandshurica was constrained by temperature and precipitation during the growing season. There was difference in radial growth among F. mandshurica from different provenances under drought stress. F. mandshurica from Wangqing, Dailing, and Hailin had stronger resistance to drought, while that from Wandianzi, Zhanhe, and Xinglong had better recovery ability after drought.
    Responses of radial growth of Larix principis-rupprechtii at different densities to drought events
    ZHANG Zihang, WANG Heng, JIA Jianheng, SUN Haokang, HAN Jiaxuan, GUO Mingming
    2024, 35(5):  1169-1176.  doi:10.13287/j.1001-9332.202405.005
    Asbtract ( 243 )   PDF (1901KB) ( 25 )  
    In recent years, a surge in drought occurrences has dramatically impacted tree growth worldwide. We examined the ecological resilience of Larix principis-rupprechtii plantations with varying densities (1950, 2355, and 2595 trees·hm-2) at the Saihanba Mechanical Forest Farm, by extracting the increment cores using the standard dendrochronological method to measure individual-tree basal area increments (BAI) as part of our assessment of ecological resilience, including resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that drought events occurred in 2006-2010, 2015, and 2018. The Rt for L. principis-rupprechtii plantations varied from 0.76 to 2.01 across three drought events, indicating generally high resistance, except for the plantation with 2355 trees·hm-2 during the second dry year (Rt=0.69). The Rt for the plantation with 2595 trees·hm-2 significantly decreased across all drought events, while no significant change was observed in the plantations with 1950 and 2355 trees·hm-2. The Rc showed no differences in response to a single drought event across plantation densities, with a significant upward trend for all the densities with each occurrence of drought event. There was no significant difference in the resilience of different densities of L. principis-rupprechtii to the first drought event, whereas the plantation with 2595 trees·hm-2 exhibited significantly lower Rs during the second and third drought events compared with 1950 and 2355 trees·hm-2, respectively. During the 2015 drought event, plantation with 2595 trees·hm-2 experienced a significant growth decline (radial growth change rate was -26.5%), while no such decline was observed in the plantations with 1950 and 2355 trees·hm-2. Overall, the plantation with 2595 trees·hm-2 demonstrated the lowest resilience to drought events.
    Response of radial growth of different timberline species to climate change in Yading Nature Reserve, Sichuan, China
    LIU Ze, LI Jun, SHI Songlin, YANG Rui, LUO Wenwen, MA Yilin, BIE Xiaojuan, WANG Guoyan
    2024, 35(5):  1177-1186.  doi:10.13287/j.1001-9332.202405.001
    Asbtract ( 193 )   PDF (4055KB) ( 24 )  
    The radial growth of trees in alpine timberline is particularly sensitive to climate change. We sampled and disposed tree-ring cores of three coniferous tree species including Juniperus saltuaria, Abies forrestii, and Larix potaninii at alpine timberline in Yading Nature Reserve. The standard tree-ring chronology was used to explore the response of radial growth of different timberline species to climate change. The results showed that radial growth of L. potaninii increased after 2000, while that of A. forrestii declined after 2002, and J. saltuaria showed a significant decreasing growth trend in the past 10 years. Such results indicated divergent growth responses to climate factors among the three tree species at alpine timberline. The radial growth of J. saltuaria was sensitive to temperature, and was positively correlated with the minimum temperature from previous October to current August, the mean tempera-ture from previous November to current April and from current July to October, but was negatively associated with the relative humidity from current July to October. The radial growth of A. forrestii showed negative correlation with mean temperature and the maximum temperature from May to June in the current year, while it exhibited positive association with the relative humidity and the Palmer drought severity index from May to June in the current year. L. potaninii radial growth was positively associated with mean temperature and the maximum temperature of November-December in the previous year, the maximum temperature of current March and mean temperature of current August. The temporal stability of climate-growth relationship varied among different timberline species. The positive correlation between radial growth of A. forrestii and J. saltuaria and temperature gradually decreased, while the posi-tive relationship of L. potaninii radial growth and temperature gradually increased. Under the background of climate warming, rapid rise in surface air temperatures may promote the radial growth of L. potaninii, while inhibit that of J. saltuaria and A. forrestii, which may change the position of regional timberline.
    Radial growth response of Populus euphratica to climate change in the Cele desert oasis ecotone, China
    QI Yanying, KEYIMU Maierdang, LI Zongshan, ZENG Fanjiang
    2024, 35(5):  1187-1195.  doi:10.13287/j.1001-9332.202405.003
    Asbtract ( 206 )   PDF (3796KB) ( 28 )  
    Populus euphratica is an important tree species in the arid regions of Northwest China, which is sensitive to climate changes. Climate of the Northwest China is changing to be “warm and humid”, but how it would affect the regional forest growth is not clear. In this study, the radial growth response of P. euphratica to major climatic factors and their temporal changes during 1984-2021 were analyzed by using dendrochronology method in the desert oasis ecotone of Cele in the southern Tarim basin. The results showed that tree-ring width index of P. euphratica had a significant negative correlation with temperature in September of the previous year, and in February and May of current year, had significant positive correlation with precipitation in September of previous year and March and May of current year, and had significant positive correlations with SPEI in February and May of current year. The relationships between tree-ring width index and combined month climatic factors were more obvious. The results of moving correlation analysis showed that the correlation between tree-ring width index and temperature in the growing season tended to be strengthened in recent years, while the correlation between tree-ring width index and precipitation, SPEI tended to be declined or remain stable. The variations of the relationships between tree-ring width index and combined month climatic factors were more obvious compared that with single month. Current regional climate is conducive to the growth and development, as well as the improvement of ecological shelter function of P. euphratica forest in the desert oasis ecotone of Cele.
    Growth decline characteristics of Picea schrenkiana at different altitudes in Yili River Basin, western Tian-shan Mountains, Xinjiang, China
    ZHANG Xinyu, GAO Lushuang, LIU Kexiang, QIN Li, ZHANG Ruibo, HAN Xinyu, ZHAO Bingqian
    2024, 35(5):  1196-1204.  doi:10.13287/j.1001-9332.202405.006
    Asbtract ( 226 )   PDF (3275KB) ( 26 )  
    Picea schrenkiana is the dominant tree species in Ili River Basin located in the western Tianshan Mountains of Xinjiang. We investigated the growth decline characteristics of P. schrenkiana at different altitudes (1800, 2300 and 2800 m) based on tree-ring index (TRI) and percentage growth change (GC), aiming to understand the growth response of P. schrenkiana to drought events at different altitudes and the impacts of altitude on tree growth decline in this region. The results showed that P. schrenkiana experienced multiple decline events at low-altitude (1800 m). TRI and GC identified inconsistent occurrence time of the decline events. The variations of TRI indicated that P. schrenkiana at low-altitude experienced two large-scale declines during 1927-1933 and 2017-2014, respectively. The variations of GC identified four decline events, including 1891-1893, 1924-1926, 1973-1975, and 2004-2009. The radial growth of P. schrenkiana across altitudes from low to high was significantly affected by the Palmer drought severity index (PDSI) of the previous growing season. The impact of current PDSI on P. schrenkiana during the growing season initially enhanced but later decreased with increasing altitude. In the extreme drought year 1917, the magnitude of growth decline increased with altitude. At low-altitude (1800 m), the TRI was 0.65, which was 35% lower than the normal level. At mid-altitude (2300 m) and high-altitude (2800 m), it was 0.56 and 0.54, respectively, being 40% lower than the average level. The drought event in 1917 had a 2-year legacy effect on the growth of P. schrenkiana at all the altitudes, with the TRI in 1920 recovered to exceeding 0.9, being close to the normal level. The impact of altitude on drought-induced forest decline was significant. Tree growth in low-altitude areas was more vulnerable to drought events due to the relatively poorer water and temperature conditions at low-altitude, which could lead to multiple large-scale decline events. In mid- and high-altitude areas, where hydrothermal conditions were more favorable, trees could experience even more severe decline during extreme droughts.
    Response of radial growth of Pinus wallichiana to climate change in Mount Qomolangma, Tibet, China
    LI Jun, LIU Ze, WANG Pai, YANG Rui, SHI Fengming, DENG Jie, WANG Guoyan, SHI Songlin
    2024, 35(5):  1205-1213.  doi:10.13287/j.1001-9332.202405.002
    Asbtract ( 141 )   PDF (3033KB) ( 22 )  
    Global warming would significantly impact tree growth in the Tibetan Plateau. However, the specific effects of climate change on the radial growth of Pinus wallichiana in Mount Qomolangma are still uncertain. To investigate the responses of radial growth of P. wallichiana to climate change, we analyzed tree-ring samples in Mount Qomolangma. We removed the age-related growth trends and established three chronologies by using the modified negative exponential curve, basal area index, and regional curve standardization, and conducted Pearson correlation and moving correlation analyses to examine the association between radial growth of P. wallichiana and climatic factors. The results showed that this region had experienced a significant upward trend in temperature and that the Palmer drought severity index (PDSI) indicated a decreasing trend since 1980s, while the relative humi-dity changed from a significant upward to a downward trend around 2004, implying the climate shifted toward warmer and drier. Results of Pearson correlation analysis indicated a significant and positive relationship between the radial growth of P. wallichiana and the minimum temperature of April-June and July-September, and precipitation of January-April in the current year. The radial growth of P. wallichiana was significantly and negatively associated with the relative humidity of June, July, and August in the current year. As temperature rose after 1983, the relationship between radial growth of P. wallichiana and the minimum temperature in July and September of the current year increased from a non-significant association to a significant and positive association, while the relationship between radial growth of P. wallichiana and relative humidity in August and precipitation in September of the current year changed from non-significant correlation to a significant and negative correlation. Results of the moving correlation analysis suggested that the radial growth of P. wallichiana showed a significant and stable correlation with the July-September minimum temperature of the current year. Under the background of climate warming, the rapid increases of temperature would accelerate the radial growth of P. wallichiana in Mount Qomolangma.
    Application of micro-computed tomography (μCT)in quantifying xylem vessels of broadleaved trees
    BAI Chunmei, LIANG Guoqin, FU Yunlin, HAN Erkang, GUO Xiali, WANG Feng
    2024, 35(5):  1214-1222.  doi:10.13287/j.1001-9332.202405.008
    Asbtract ( 140 )   PDF (2926KB) ( 15 )  
    Quantitative analysis of vessel characteristics at the cellular scale is of great significance for understan-ding plant adaptation strategies to environment. The direct grinding combined with stereo-microscope imaging is one of the main approaches to examine the anatomical structure of xylem (conifer tracheid and hardwood vessel) wood structure, which inevitably damages xylem cells, hindering the accurate understanding of anatomical structures. In this study, we applied X-ray micro-computed tomography (μCT) and stereo-microscope technology to quantitatively measure the diameter and area of vessels of seven Canadian broadleaved tree species (Acer saccharum, Betula papyrifera, Fraxinus americana, Ostrya virginiana, Populus grandidentata, Quercus rubra, and Carya cordiformis). We fitted the results by linear model and tested the feasibility of μCT technology in quantifying the vessel size of broadleaved species. We found that the results of the two methods for measuring vessel size were highly similar (R2=0.98). The goodness of fit of the vessel diameter results measured by the two methods for the ring-porous wood species (C. cordiformis, R2=0.98; F. americana, R2=0.96; Q. rubra, R2=0.99) was higher than that of the diffuse-porous wood species (B. papyrifera, R2=0.88; O. virginiana, R2=0.73; A. saccharum, R2=0.68; P. grandiden-tata, R2=0.88). The goodness of fit of small vessels (diameter≤200 μm, R2=0.94) measured by the two methods was higher than that of large vessels (diameter>200 μm, R2=0.92). Thus, the μCT technique provided a new non-destructive detection method for quantifying xylem vessels of broadleaved tree species.
    Research progress on cambium activity and radial growth dynamics monitoring of coniferous species
    WANG Yuetong, ZHANG Junzhou, LIU Junjun, WANG Lijuan, LI Yulin
    2024, 35(5):  1223-1232.  doi:10.13287/j.1001-9332.202405.007
    Asbtract ( 215 )   PDF (1418KB) ( 39 )  
    The radial growth of trees plays a crucial role in determining forest carbon sequestration capacity. Understanding the growth dynamics of trees and their response to environmental factors is essential for predicting forest's carbon sink potential under future climate change. Coniferous forest trees are particularly sensitive to climate change, with growth dynamics responding rapidly to environmental shifts. We collected and analyzed data from 99 papers published between 1975 and 2023, and examined the effects of exogenous factors (such as temperature, water, and photoperiod) and endogenous factors (including tree age and species) on cambial activity and radial growth in conifers. We further explored the mechanisms underlying these effects. The results showed that climate warming had the potential to advance the onset while delayed the end of xylem differentiation stages in conifers in temperate and boreal regions. Water availability played a crucial role in regulating the timing of cambial phenology and wood formation by influencing water potential and cell turgor. Additionally, the photoperiod not only participated in regulating the start and end times of growth, but also influenced the timing of maximum growth rate occurrence. Future climate warming was expected to extend the growing season, leading to increase in growth of conifers in boreal regions and expanding forests to higher altitudes or latitudes. However, changes in precipitation patterns and increased evapotranspiration resulting from temperature increases might advance the end of growing season and reduce growth rate in arid areas. To gain a more comprehensive understanding of the relationship between radial growth and climatic factors, it is necessary to develop process-based models to elucidate the physiological mechanisms underlying wood formation and the response of trees to climatic factors.
    Original Articles
    Variations in soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantations with different ages
    SUN Ben, ZHOU Yunchao, DENG Mei, ZHANG Jiachun, LUO Guobing
    2024, 35(5):  1233-1241.  doi:10.13287/j.1001-9332.202405.010
    Asbtract ( 217 )   PDF (2049KB) ( 27 )  
    The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).
    Seasonal changes of ammonia-oxidizing bacterial communities during tropical forest restoration
    WANG Mingliu, CAO Qianbin, LU Mei, ZUO Qianqian, ZHAO Shuang, CHEN Minkun, WANG Ping
    2024, 35(5):  1242-1250.  doi:10.13287/j.1001-9332.202405.015
    Asbtract ( 140 )   PDF (995KB) ( 21 )  
    In this study, we used a high-throughput sequencing technology to survey the dry-wet seasonal change characteristics of soil ammonia-oxidizing bacteria (AOB) communities in the three restoration stages [i.e., Mallotus paniculatus community (early stage), Millettia leptobotrya community (middle stage), and Syzygium oblatum community (later stage)] of Xishuangbanna tropical forest ecosystems. We analyzed the effects of soil physicochemical characteristics on AOB community composition and diversity during tropical forest restoration. The results showed that tropical forest restoration significantly affected the relative abundance of dominant AOB phyla and their dry-wet seasonal variation. The maximum relative abundance of Proteobacteria (71.3%) was found in the early recovery stage, while that of Actinobacteria was found in the late recovery stage (1.0%). The abundances of Proteobacteria and Actinobacteria had the maximum ranges of dry-wet seasonal variation in the early and late stages, respectively. The abundance of dominant AOB genera and its dry-wet seasonal variation varied across tropical forest restoration stages. The maximum average relative abundance of Nitrosospira and Nitrosomonas in the late recovery stage was 66.2% and 1.5%, respectively. In contrast, the abundance of Nitrosovibrio reached its maximum (25.6%) in the early recovery stage. The maximum dry-wet seasonal variation in relative abundance of Nitrosospira and Nitrosomonas occurred in the early recovery stage, while that of Nitrosovibrio occurred in the middle recovery stage. The Chao1, Shannon, and Simpson diversity indices of AOB communities increased along the restoration stages, which were significantly higher in the wet season than in the dry season. The results of canonical correspondence analysis showed that soil easily oxidized carbon was the main factor controlling AOB community diversity and Actinobacteria abundance. Soil bulk density and temperature were the main factors affecting Proteobacteria abundance. Soil pH, microbial biomass carbon, water content, ammonium nitrogen, bulk density, and temperature were the main factors controlling the abundances of Nitrosospira, Nitrosomonas, and Nitrosovibrio. Therefore, tropical forest restoration can regulate the change of relative abundance of dominant AOB taxa via mediating the changes of soil temperature, bulk density, and readily oxidized carbon, leading to an increase in soil AOB community diversity.
    Effects of mycorrhizal types on herbaceous species richness in forest ecosystem
    GAO Xushuo, WANG Zhen, SHI Zhaoyong
    2024, 35(5):  1251-1259.  doi:10.13287/j.1001-9332.202404.007
    Asbtract ( 158 )   PDF (4557KB) ( 22 )  
    Species richness plays an important role in ecosystem stability and health. Mycorrhizal type is an important factor affecting ecological processes. How mycorrhizal types affect understory herb species richness and their responses to environmental changes remain largely unknown. We investigated the effects of mycorrhizal types on species richness and their responses to environmental change in understory herbaceous communities based on data of three mycorrhizal types of dominated trees (including 1604 arbuscular mycorrhiza (AM) trees, 4654 ectomycorrhiza (ECM) trees, and 5568 AM+ECM trees) and environmental factors in America. The results showed significant differences in species richness of herbaceous plant communities among different mycorrhizal types. Forests with higher dominance of AM plants tended to have higher herbaceous plant richness, supporting the mycorrhizal mediation hypothesis. The impacts of environmental factors (latitude, temperature, precipitation, nitrogen deposition, and soil characteristics) on species richness of herbaceous plant communities depended on mycorrhizal type of forests. The species richness of understory herbs in AM, ECM, and AM+ECM forests was mostly affected by nitrogen deposition, temperature, and soil pH, with the relative importance of 42.3%, 41.1% and 48.7%, respectively. Mycorrhizal types of dominant trees played a vital role in regulating the species richness of understory herbs and influenced their responses to environmental changes.
    Climate change affects plant aboveground biomass by regulating the growth periods in alpine grasslands of the Tibetan Plateau, China
    YANG Congying, DING Ying, MA Fulin, ZHOU Huakun, WANG Xiaoli, ZHANG Qiang, LIU Xiaowei, MUTALIFU Wubuli, GUO Liang
    2024, 35(5):  1260-1268.  doi:10.13287/j.1001-9332.202405.020
    Asbtract ( 203 )   PDF (2410KB) ( 31 )  
    Climate change significantly affects plant biomass and phenological occurrence time in alpine grasslands of Tibetan Plateau. The changes in phenological periods are closely related to the length of vegetative and reproductive growth periods, which may further affect aboveground biomass accumulation. In this study, based on fixed-point observations of plant biomass and phenology as well as the corresponding climatic data from 1997 to 2020 in the alpine grasslands of Tibetan Plateau, we used statistical methods such as ordinary linear regression and piecewise structural equation model to explore the characteristics of interannual climate change in the study area, the variation trends of plant biomass and phenological periods, and the correlations between biomass and phenological and climatic factors. The results showed that mean annual temperature and annual precipitation in the study area increased significantly from 1997 to 2020, suggesting a clear “warm-wet” trend. Aboveground biomass and relative biomass of Stipa sareptana var. krylovii (the dominant species) decreased significantly. However, absolute and relative biomass of subdominant species (Kobresia humilis) increased significantly, indicating that the dominance of K. humilis increased. The warm-wet climates enhanced aboveground biomass accumulation of K. humilis by extending the period of reproductive growth. Mean annual temperature and annual precipitation decreased aboveground biomass of S. sareptana by shortening the length of vegetative growth period. In a word, the warmer and wetter climate significantly affected aboveground biomass accumulation by regulating the changes in the phenological period, and the interspecific difference in their response resulted in a larger change in community composition. This study area may show a trend from alpine grassland to alpine meadow, and thus further works are urgently needed.
    Research on alien invasive plants in Jingzhou County, Hunan Province, China
    HU Kongfei, XIA Xin, GONG Youke, YANG Songlin, XU Yongfu
    2024, 35(5):  1269-1274.  doi:10.13287/j.1001-9332.202405.009
    Asbtract ( 162 )   PDF (781KB) ( 27 )  
    Harm from alien invasive plants is increasing in Jingzhou County, Hunan Province. Based on a one-year field investigation and available literature, we investigated species composition, origin, flora, degree of harm and distribution pattern of invasive plants in the county. The results showed that there were 34 invasive plant species from 27 genera and 16 families in this County. The dominant invasive species belonged to Asteraceae (8 species) and Amaranthaceae (6 species), which accounted for 23.5% and 17.7%, respectively. The majority of invasive plants originated from South America (45.7%) and North America (30.4%). Tropical flora showed a significantly higher representation than temperate flora, signifying robust tropical characteristics amongst the invasive plant population. Based on hazard level classification, we recognized four types as malicious invasion (Level 1): Alternanthera philoxeroides, Erigeron annuus, E. canadensis, and Xanthium chinense. In addition, five types were classified as severe invasion (Level 2), eight types as local invasion (Level 3), fifteen types as general invasion (Level 4), while two types were still under observation (Level 5). The pattern of distribution demonstrated that invasive plants in Jingzhou County mostly spread along the verges of transportation roads, in human settlements, and in a few areas of water flow. The higher levels of invasion damage were principally concentrated in the central part of Jingzhou County.
    Effect of freeze-thaw cycles on aggregate breakdown of typical black soil during transportation
    ZHANG Xi, MA Renming, JIA Yanfeng, FAN Haoming, CHU Zhiting
    2024, 35(5):  1275-1282.  doi:10.13287/j.1001-9332.202405.013
    Asbtract ( 155 )   PDF (3082KB) ( 38 )  
    During the snowmelt period, the external erosive forces are dominated by freeze-thaw cycles and snowmelt runoff. These forces may affect soil structure and aggregate stability, thereby influencing snowmelt erosion. The process of snowmelt runoff can lead to the breakdown of aggregates during their transportation. However, few studies examined the effects of freeze-thaw cycles on the breakdown of aggregates during transportation. Focusing on 5-7 and 3-5 mm soil aggregates of typical black soil region in Northeast China, we analyzed the composition of water-stable aggregates, mean weight diameter (MWD), normalized mean weight diameter (NMWD), as well as breakdown rate of soil aggregates (BR) under different freeze-thaw cycles (0, 1, 5, 10, 15 and 20 times) and different transport distances (5, 10, 15, 20, 25 and 30 m). We further investigated the contribution (CT) of both freeze-thaw cycles and transport distances to BR. The results showed that: 1) After freeze-thaw cycles, the 5-7 and 3-5 mm aggregates were mainly composed of particles with a diameter of 0.5-1 mm. With increasing frequency of freeze-thaw cycles, the MWD generally showed a downward trend. Moreover, under the same number of freeze-thaw cycles, the NMWD of 3-5 mm aggregates was higher than that of 5-7 mm aggregates. 2) As the transport distance increased, the BR of 5-7and 3-5 mm aggregates gradually increased. Compared that under control group, the BR under one freeze-thaw cycle increased by 59.7%, 32.2%, 13.7%, 6.2%, 13.4%, 7.5%, and 60.0%, 39.0%, 18.4%, 13.0%, 6.3%, 6.1% at the condition of 5, 10, 15, 20, 25 and 30 m transport distances, respectively. However, with increasing frequency of freeze-thaw cycles, the BR increased slowly. 3) The breakdown of soil aggregates was mainly influenced by the transport distance (CT=54.6%) and freeze-thaw cycles (CT=26.2%). Freeze-thaw cycles primarily altered the stability of soil aggregates, which in turn affected the BR. Therefore, during the snowmelt period, freeze-thaw cycles reduced the stability of soil aggregates, leading to severe breakdown of soil aggregates during snowmelt runoff process. This made the soil more susceptible to migration with snowmelt runoff, which triggered soil erosion. Therefore, more attention should be paid on the prevention of soil erosion during snowmelt period.
    Effects of water-nitrogen interactions on NH3 and N2O emissions and yield in winter wheat cropland
    ZHANG Yujiao, PANG Guibin, YU Jing, ZHANG Haifeng, ZHANG Lizhi, WANG Xin, DONG Wenxu, XU Zhenghe
    2024, 35(5):  1283-1292.  doi:10.13287/j.1001-9332.202405.012
    Asbtract ( 153 )   PDF (2846KB) ( 24 )  
    To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.
    Effects of reductive soil disinfestation and organic fertilizer application on microbial community stability in a facility vegetable soil
    YIN Chunjiang, LIU Maolan, ZHONG Xianfang, SI Youtao, MA Hongliang, GAO Ren, YIN Yunfeng
    2024, 35(5):  1293-1300.  doi:10.13287/j.1001-9332.202404.031
    Asbtract ( 167 )   PDF (1625KB) ( 20 )  
    Reductive soil disinfestation (RSD) is an effective method for remediating degraded facility vegetable soils. However, the effectiveness of RSD using green manure as a carbon source in the field has not yet been clarified. We investigated the effects of RSD and organic fertilizer application on soil microbial community composition, diversity, and stability in a degraded facility vegetable soil. There were six treatments, including no fertilization (CK), no fertilization and soil flooded and mulched with plastic film (FF), soil amended with chicken manure (OM), soil amended with chicken manure and flooded and mulched with plastic film (OMR), soil amended with Sesbania cannabina (TF), and soil amended with S. cannabina and flooded and mulched with plastic film (TR). The results showed that the OMR and TR treatments significantly decreased bacterial Chao1 index, altered bacterial and fungal community structure, and increased the relative abundances of Bacillus, Rhodococcus, Clostridium, and Penicillium. The TR treatment significantly reduced the relative abundance of Fusarium. Results of redundancy analysis and Mantel test analysis suggested that soil ammonium nitrogen and dissolved organic carbon contents were the key factors influencing bacterial community composition, and soil pH was the key factor affecting fungal community composition. Results of cohesion analysis showed that the OMR and TR treatments significantly improved bacterial community stability, and that there was no difference between OMR and TR treatments. The TR treatment enhanced fungal community stability, which was significantly higher than the OMR treatment. Therefore, the RSD with green manure as carbon source could be effective remediation practice to improve soil health.
    Optimized nutrients management improved citrus yield and fruit quality in China: A meta-analysis
    XU Hao, WANG Yuwen, LUO Ziwei, HU Wenlang, LIAO Wenqiang, CHEN Lisong, LI Yan, GUO Jiuxin
    2024, 35(5):  1301-1311.  doi:10.13287/j.1001-9332.202405.011
    Asbtract ( 182 )   PDF (3533KB) ( 32 )  
    Clarifying current situation of farmers' fertilization and yield in citrus producing areas and the effects of different fertilization measures can provide a scientific basis for improving the yield and quality of citrus in China. We retrieved 92 literatures on citrus fertilization from the CNKI and Web of Science to examine the impacts of nitrogen (N), phosphorus (P or P2O5), and potassium (K or K2O) fertilizer dosage and partial productivity under farmers' conventional fertilization and experts' optimized fertilization, as well as the effects of optimized fertilization measures on citrus yield and quality by using meta-analysis approach. The average conventional application rates of N, P2O5, and K2O were 507.3, 262.2, and 369.3 kg·hm-2 in citrus production in China. Compared with conventional fertilization, optimized fertilization resulted in a reduction of N and P2O5 by 14.7% and 8.3%, an increase in K2O application by 6.6%, which promoted partial productivity of N, P2O5, and K2O fertilizers by 7.8%, 18.4%, and 14.7%, correspondingly. The optimized fertilization resulted in 11.9% and 2.8% increase in fruit yield and single fruit weight, while improved vitamin C content (Vc, 3.1%), total soluble solids (TSS, 5.9%) and total sugar content (TSC, 8.6%). Additionally, it also led to a reduction in titratable acid (TA, -3.4%) and total acid content (TAC, -3.6%), and consequently elevated the TSS/TA (14.0%) and TSC/TAC (9.5%). Among different optimized fertilization methods, the effect of optimized NPK + medium and/or micro element fertilizer on citrus yield and fruit quality was the best, especially NPK decrement ≤25% between optimized NPK measures. The effect of conventional NPK + organic fertilizer was higher than conventional NPK + medium and/or micro element fertilizer. However, different citrus varieties, including mandarins, pomelos, and oranges, showed different responses to optimized fertilization. Optimized fertilization management could synergistically improve citrus yield, fertilizer use efficiency, and fruit quality. Therefore, the strategy of integrated nutrient management1 with reducing NPK fertilizer, balancing medium and/or micro nutrient fertilizer and improving soil fertility by organic fertilizer should be adopted according to local conditions in citrus producing areas of China.
    Characteristics and drivers of vegetation temporal dynamics in Hunan Province of China during 2002-2020
    WANG Ruoru, LI Xiaoma, GAN Dexin, LIU Huanyao, TANG Le, CAI Zhengwu
    2024, 35(5):  1312-1320.  doi:10.13287/j.1001-9332.202405.023
    Asbtract ( 214 )   PDF (3989KB) ( 35 )  
    Understanding the influences of climate change and human activities on vegetation change is the foundation for effective ecosystem management. Based on the 250 m MODIS-NDVI data from 2002 to 2020, we employed Theil-Sen Median trend analysis and the Mann-Kendall test to quantify vegetation change in Hunan Province. By combining with meteorological, nighttime light index, land cover and other data, residual analysis and correlation analysis, we examined the impacts of human activities and climate change on vegetation dynamics at both the pixel level and the county level. The results showed that the normalized difference vegetation index (NDVI) in Hunan Province exhibited a spatial pattern of “overall improvement with localized degradation” during 2002-2020. Approximately 64.9% of the study area experienced significant vegetation improvement, mainly occurring in the western and central-southern parts of Hunan Province. 1.4% of the study area experienced significant vegetation degradation, mostly in the newly developed urban areas and the farmland in the Dongting Lake Plain. Human activities and climate change jointly promoted vegetation improvement in 67.9% of the study area. Human activities and climate contributed to 96% and 4% of the NDVI change, respectively. At the county level, human activities contributed to over 80% of the NDVI change in each district or county. The impacts of human activities on vegetation change exhibited significant spatial heterogeneity. Urban expansion led to vegetation degradation in the newly developed areas, while vegetation growth appeared in the old developed urban areas. The ecological restoration projects promoted vegetation restoration in the western part of Hunan Province. This study could help us better understand the spatiotemporal variations of vegetation and their responses to climate change and human activities, which would offer scientific basis for effective ecological restoration policy.
    Estimation of soil moisture and organic matter content in saline alkali farmland by using CARS algorithm combined with covariates
    DING Qidong, WANG Yijing, ZHANG Junhua, JIA Keli, HUANG Huayu
    2024, 35(5):  1321-1330.  doi:10.13287/j.1001-9332.202405.021
    Asbtract ( 153 )   PDF (2559KB) ( 22 )  
    Rapid acquisition of the data of soil moisture content (SMC) and soil organic matter (SOM) content is crucial for the improvement and utilization of saline alkali farmland soil. Based on field measurements of hyperspectral reflectance and soil properties of farmland soil in the Hetao Plain, we used a competitive adaptive reweighted sampling algorithm (CARS) to screen sensitive bands after transforming the original spectral reflectance (Ref) into a standard normal variable (SNV). Strategies Ⅰ, Ⅱ, and Ⅲ were used to model the input variables of Ref, Ref SNV, Ref-SNV+ soil covariate (SC), and digital elevation model (DEM). We constructed SMC and SOM estimation models based on random forest (RF) and light gradient boosting machine (LightGBM), and then verified and compared the accuracy of the models. The results showed that after CARS screening, the sensitive bands of SMC and SOM were compressed to below 3.3% of the entire band, which effectively optimized band selection and reduced redundant spectral information. Compared with the LightGBM model, the RF model had higher accuracy in SMC and SOM estimation, and the input variable strategy Ⅲ was better than Ⅱ and Ⅰ. The introduction of auxiliary variables effectively improved the estimation ability of the model. Based on comprehensive analysis, the coefficient of determination (Rp2), root mean square error (RMSE), and relative analysis error (RPD) of the SMC estimation model validation based on strategy Ⅲ-RF were 0.63, 3.16, and 2.01, respectively. The SOM estimation models based on strategy Ⅲ-RF had Rp2, RMSE, and RPD of 0.93, 1.15, and 3.52, respectively. The strategy Ⅲ-RF model was an effective method for estimating SMC and SOM. Our results could provide a new method for the rapid estimation of soil moisture and organic matter content in saline alkali farmland.
    Effects of food waste biogas residue composting on soil aggregates and its organic matter content in relocation site
    WU Haibing, NIU Yuhui, LIANG Jing
    2024, 35(5):  1331-1336.  doi:10.13287/j.1001-9332.202405.014
    Asbtract ( 189 )   PDF (1447KB) ( 30 )  
    Understanding the effects of food waste biogas residue composting and chemical amendments on soil aggregates composition of different particle sizes, stability, and organic matter distribution in relocation sites could provide primary data for improving soil quality and land utilization of food waste biogas residue composting. We analyzed the characteristics of soil aggregates distribution, stability of aggregates, and organic matter content in different particle sizes under treatments with different application amounts of food waste biogas residue composting, chemical amendments (β-cyclodextrin, calcium sulfate and ferric oxide were mixed at a mass ratio of 1:1:1), and control (100% soil). The results showed that 20% (soil: biogas residue composting=8:2) and 30% (soil: biogas residue composting =7:3) biogas residue composting significantly decreased the micro-aggregates content with the particle size of <0.106 mm and increased the large aggregates content with the particle size of 0.5-1.0 mm. All treatments significantly increased large aggregates content with the particle size of ≥2.0 mm, soil aggregate structure content, and mean weight diameter, but reduced the percentage of aggregate destruction. Among all the treatments, the effect of mixes application of 20% biogas residue composting and chemical amendments was the best. Biogas residue composting treatments significantly affected the distribution of organic matter in soil aggregates, with the strongest effect under 30% biogas residue composting treatment. Biogas residue composting treatments significantly increased soil organic matter content in all aggregates, with the maximal increase of organic matter content in soil micro-aggregates with the particle size of 0.106-0.25 mm. In conclusion, biogas residue composting could increase organic matter content of soil aggregates in different particle sizes, promote the formation of large soil aggregates, and improve the stability of aggregation. Specifically, the mixed application of biogas residue composting and chemical amendments performed better on soil improvement in relocation site.
    Ecological environment quality of the Shanxi section of the Yellow River Basin under different development scenarios
    FU Shaotong, HE Chenxi, MA Jiakai, WANG Ben, ZHEN Zhilei
    2024, 35(5):  1337-1346.  doi:10.13287/j.1001-9332.202405.027
    Asbtract ( 152 )   PDF (2858KB) ( 26 )  
    Shanxi Province holds an important strategic position in the overall ecological pattern of the Yellow River Basin. To investigate the changes of the ecological environment in the Shanxi section of the Yellow River Basin from 2000 to 2020, we selected MODIS remote sensing image data to determine the remote sensing ecological index (RSEI) based on the principal component analysis of greenness, humidity, dryness, and heat. Then, we analyzed the spatial and temporal variations of ecological quality in this region to explore the influencing factors. We further used the CA-Markov model to simulate and predict the ecological environment under different development scenarios in the Shanxi section of the Yellow River Basin in 2030. The results showed that RSEI had good applicability in the Shanxi section of the Yellow River Basin which could be used to monitor and evaluate the spatiotemporal variations in its ecological environment. From 2000 to 2020, the Shanxi section of the Yellow River Basin was dominated by low quality habitat areas, in which the ecological environment quality continued to improve from 2000 to 2010 and decreased from 2010 to 2020. The high quality habitat areas mainly located on the mountainous areas with superior natural conditions and rich biodiversity, while the low ecological quality areas were mainly in the Taiyuan Basin and the northern part of the study area, where the mining industry developed well. Climate factors were negatively correlated with ecological environment quality in the northern and central parts of the study area, and positively correlated with that in the mountainous area. Under all three development scenarios, the area of cultivated land, forest, water and construction land increased in 2030 compared to that in 2020. Compared to the natural development scenario and the cultivated land protection scenario, the ecological constraint scenario with RSEI as the limiting factor had the highest area of new forest and the lowest expansion rate of cultivated land and construction land. The results would provide a reference for land space planning and ecological environment protection in the Shanxi section of the Yellow River Basin.
    Ecological risk assessment and influencing factors in the Wuhan Metropolitan Area based on supply and demand bundles of ecosystem services
    HE Guoyu, ZHANG Lei, LEI Xiqiong, SUN Yuanyang, WAN Yuwen, XIONG Hailing
    2024, 35(5):  1347-1358.  doi:10.13287/j.1001-9332.202405.025
    Asbtract ( 213 )   PDF (10594KB) ( 43 )  
    In the context of rapid urbanization, metropolitan areas are facing the risk of supply-demand mismatches among ecosystem services. Investigating the patterns, relationships, and driving factors of multiple supply-demand risks is of great significance to support the efficient management of regional ecological risks. We quantified the single/comprehensive supply-demand risk rates of six ecosystem services in Wuhan Metropolitan Area at the township scale in 2000, 2010, and 2020. By applying the self-organizing feature map network and optimal parameter geo-detector, we identified supply-demand risks bundles of ecosystem services and influencing factors of comprehensive risks. The results showed significant spatial variations in the supply-demand risks of typical ecosystem services from 2000 to 2020. The supply-demand risk associated with grain production, water yield, carbon sequestration, and green space recreation increased, while soil conservation and water purification risks decreased. The comprehensive ecosystem services supply-demand risk increased from 0.41 to 0.45, indicating a ‘core area increase and periphery decrease' trend. Throughout the study period, the area exhibited bundles of comprehensive extremely high-risk bundles (B1), comprehensive high-risk bundles (B2), water purification high-risk bundles (B3), and grain production-soil conservation risk bundles (B4). The transition of risk types from B3 to B2 and from B2 to B1 suggested an increase in the combination and intensity of supply-demand risk. Vegetation cover, nighttime light index, and population density were the main driving factors for spatial variations in comprehensive supply-demand risk. Ecologi-cal risk assessment based on ecosystem services supply-demand bundles could provide an effective and reliable way to regulate multiple regional risk issues.
    Temporal-spatial evolution of the integrated landscape patterns in the Zhengzhou Metropolitan Area based on nighttime light data
    PENG Huisi, WANG Yanhui, WANG Zhigang
    2024, 35(5):  1359-1368.  doi:10.13287/j.1001-9332.202405.026
    Asbtract ( 159 )   PDF (3013KB) ( 16 )  
    Metropolitan integration development refers to the interconnection between cities and the coordinated development of various aspects such as economy, society, culture, and nature, which is the goal of metropolitan area development. With the Zhengzhou metropolitan area as the research area and based on nighttime light data from 2012 to 2021, we comprehensively used landscape index and landscape morphology spatial pattern analysis methods, systematically evaluated the integration process of the metropolitan area from the perspective of spatial expansion and spatial connection, analyzed the spatiotemporal variations of the landscape pattern of the metropolitan area, and revealed the spatiotemporal expansion and connection patterns of the metropolitan area. The results showed that the area of the Zhengzhou metropolitan area expanded year by year from 2012 to 2021, with the number of landscape patches continuously increasing, showing an agglomeration phenomenon. In the metropolitan area, there was a trend towards stability and multi-directional coordinated growth. The contribution of non-central cities to expansion increased annually, while the expansion patterns of various constituent cities gradually shifted from internal filling to external expansion. The connection scale within the metropolitan area had been expanding annually, with enhanced intercity connections. Intercity connection belts and channels for material and information exchange were emerging, and the integrated network of urban agglomeration connections was gradually forming. Metropolitan integration planning provided positive guidance for the development of metropolitan areas. We should fully leverage the driving effects of metropolitan areas, pay attention to the integration of Zhengzhou-Kaifeng and Zhengzhou-Xuchang, promote the formation of emerging growth poles in Xinxiang and Jiaozuo, as well as regional coordinated development, strengthen the network of policies, economy, transportation, information, etc., and form a diversified and integrated development situation.
    Temporal and spatial variations and driving factors of phytoplankton in Yongjiang River estuary
    OU Yijun, JIANG Zhibing, XU Manqiu, YU Peisong, DU Wei, WANG Degang, JIANG Yulu, ZENG Jiangning
    2024, 35(5):  1369-1378.  doi:10.13287/j.1001-9332.202405.030
    Asbtract ( 181 )   PDF (2414KB) ( 35 )  
    To explore the temporal and spatial variations in phytoplankton community in small estuaries, we collected surface water samples from Yongjiang River estuary during wet, normal, and dry seasons and determined the main driving factors of phytoplankton community. A total of 358 species belonging to nine phyla and 123 genera were identified in all seasons. During wet, normal, and dry seasons, species number was 276, 154 and 151, and the abundance was (170.45±225.43)×103, (51.92±30.28)×103 and (31.65±12.79)×103 cells·L-1, respectively. Diatoms dominated the phytoplankton community, and the main dominant species were Cyclotella meneghiniana, Skeletonema costatum, and Paralia sulcata. Shannon diversity and Pielou evenness indices decreased from inside mouth to outside mouth in wet season, but there was no obvious spatial difference in normal season or dry season. Results of non-metric multidimensional scaling analysis and analysis of similarities showed that phytoplankton community composition differed significantly among different regions (inside, at and outside mouth) and different seasons. In wet season, phytoplankton abundance was significantly positively correlated with temperature, dissolved inorganic nitrogen, and dissolved reactive phosphorus, but significantly negatively correlated with salinity. In normal season, phytoplankton abundance was significantly negatively correlated with temperature. In dry season, it was not significantly correlated with environmental factors. Results of redundancy analysis showed that temperature, salinity, ammonium and dissolved reactive phosphorus explained the variations in phytoplankton community by 19.5%, 11.9%, 9.4% and 8.2%, respectively. These results revealed high dominance of diatoms and the main driving factors (temperature, salinity and nutrients) of phytoplankton community in Yongjiang River estuary.
    Assessment of carbon reduction and sink enhancement potential of photovoltaic+mining ecological restoration model
    ZHONG Rui, WANG Jiaoyue, XU Tingting, XI Fengming, HAN Mei, HU Qinqin, BING Longfei, YIN Yan
    2024, 35(5):  1379-1387.  doi:10.13287/j.1001-9332.202405.022
    Asbtract ( 271 )   PDF (1747KB) ( 36 )  
    The energy oriented mine ecological restoration mode of photovoltaic+ecological restoration provides a breakthrough for alleviating the dilemma of photovoltaic land development and solving the urgent need for restoration of abandoned mining land. Taking a mining area in central Liaoning Province as an example, we established three photovoltaic+mining ecological restoration modes, including forest-photovoltaic complementary, agriculture-photovoltaic, and grass photovoltaic complementation. Combined with the life cycle assessment method, we calculated and assessed the potential of photovoltaic+mining ecological restoration in carbon reduction and sink enhancement. The average annual carbon reduction and sink increase was 514.93 t CO2·hm-2 under the photovoltaic+mining ecological restoration mode, while the average annual carbon reduction per megawatt photovoltaic power station was 1242.94 t CO2. The adoption of photovoltaic+ecological restoration mode in this mining area could make carbon reduction and sink enhancement 6.30-7.79 Mt CO2 during 25 years. The carbon reduction and sink increment mainly stemmed from the photovoltaic clean power generation induced carbon reduction, accounting for 96.4%-99.4%, while the contribution of ecosystem carbon sink increment was small, accounting for only 0.6%-3.7% of the total. Among different photovoltaic+ecological restoration modes, the carbon reduction and sink increment was the largest in forest-photovoltaic complementary (7.11 Mt CO2), followed by agriculture-photovoltaic (7.04 Mt CO2), and the least in grass photovoltaic complementation (6.98 Mt CO2). Constructing the development mode of “photovoltaic+mining ecological restoration” could effectively leverage the dual benefits of reducing emissions from photovoltaic power generation and increase sinks from mining ecological restoration, which would be helpful for achieving the goal of carbon neutrality in China.
    Foraging habitat selection and foraging activities of Picoides tridactylus during winter and spring in Liangshui National Nature Reserve, Heilongjiang, China
    ZHONG Han, SI Yuhui, ZHU Ziwei, RONG Ke
    2024, 35(5):  1388-1396.  doi:10.13287/j.1001-9332.202405.032
    Asbtract ( 127 )   PDF (1168KB) ( 17 )  
    We conducted field surveys on foraging habitat and foraging activities of Picoides tridactylus in Liangshui National Nature Reserve of Heilongjiang Province, China, from April to May and November to December 2022. By using the resource selection function, we analyzed the factors affecting foraging habitat selection of P. tridactylus, compared the differences between foraging habitat selection and foraging activities in winter and spring by chi-square and Mann-Whitney U tests, and investigated their foraging preference with Bailey's method. The results showed that dominant tree species and dead arbor number were the important factors affecting foraging habitat selection of P. tridactylus. They preferred habitats with a large number of dead arbor and dominant trees, such as Picea asperata and Abies fabri. They preferred trees with a height of 10-20 m and a diameter at breast height of 15-45 cm. In spring, they favored semi-withered arbors and showed random utilization of P. koraiensis. During winter, they preferred dead arbors and avoided choosing P. koraiensis. They preferred to forage on tree trunk, in spring pecking in the middle of the tree for a short duration, and during winter, digging in the upper part of the tree for a long duration. Foraging habitat selection and foraging activities of P. koraiensis showed certain differences between winter and spring.
    Reviews
    Application and prospects of hyperspectral remote sensing in monitoring plant diversity in grassland
    GU Chen, LIANG Jian, LIU Xuying, SUN Boyuan, SUN Tongsheng, YU Jiangang, SUN Chenxi, WAN Huawei, GAO Jixi
    2024, 35(5):  1397-1407.  doi:10.13287/j.1001-9332.202405.024
    Asbtract ( 307 )   PDF (552KB) ( 47 )  
    The biodiversity of grasslands is important for ecosystem function and health. The protection and mana-gement of grassland biodiversity requires the collection of the information on plant diversity. Hyperspectral remote sensing, with its unique advantages of extensive coverage and high spectral resolution, offers a new solution for long-term monitoring of plant diversity. We first reviewed the development history of hyperspectral remote sensing technology, emphasized its advantages in monitoring grassland plant diversity, and further analyzed its specific applications in this field. Finally, we discussed the challenges faced by hyperspectral remote sensing technology in its applications, such as the complexity of data processing, accuracy of algorithms, and integration with ground-based remote sensing data, and proposes prospects for future research directions. With the advancement of remote sensing technology and the integrated application of multi-source data, hyperspectral remote sensing would play an increasingly important role in grassland ecological monitoring and biodiversity conservation, which could provide scientific basis and technical support for global ecological protection and sustainable development.
    Research status and rapid detection methods of antibiotic residues in agricultural products
    ZHANG Gen, CHEN Baorui, PAN Lulu, WANG Hui, YANG Bo, BU Qinpeng
    2024, 35(5):  1408-1418.  doi:10.13287/j.1001-9332.202405.031
    Asbtract ( 224 )   PDF (614KB) ( 24 )  
    Antibiotics are widely utilized in agriculture for the prevention and treatment of animal diseases. How-ever, the abuse and overuse of antibiotics progressively increase the risks of antibiotic residues and antibiotic resis-tance. The bioaccumulation and biomagnification of antibiotics through food chains will negatively affect ecological safety, and finally threaten human health. There are many shortages of traditional antibiotic detection techniques, such as complex procedures, complicated operation and time consuming, and thus are difficult to meet the demand of instant, efficient and accurate on-site detection. Therefore, it is crucial to develop rapid detection techniques of antibiotics to manage the application of antibiotics in agriculture. We reviewed the utilization, and management of antibiotics in animal husbandry, residual characteristics, and potential hazards of antibiotics in agricultural products, summarized the advancements in rapid detection techniques of antibiotics in agricultural products over the past five years, compared the advantages and disadvantages of different rapid detection techniques, and prospected the future development in this area. This review would provide a valuable reference to the control and point-of-care test of antibiotics in agricultural products.
    Socio-ecological risk analysis framework coupled with ecosystem services
    YANG Limin, WANG Kunpeng, YI Jialin, GUO Jie, OU Minghao
    2024, 35(5):  1419-1425.  doi:10.13287/j.1001-9332.202405.019
    Asbtract ( 213 )   PDF (3128KB) ( 47 )  
    The strong coupling between society and ecosystem makes socio-ecological risks become the main object of risk management. As the link between ecological and social processes, ecosystem services (ESs) are the core variable in deconstructing the social-ecological risks and the crucial point in resolving the risks. We explored the concept and the internal formation mechanisms of socio-ecological risk combining ESs, and further put the cascade logic and evolution process of “real risk-risk perception-risk behavior”. Based on driver-pressure-state-impact-response framework (DPSIR), we proposed a framework for analyzing socio-ecological risk, and expanded the content and methodology system of research and management practices related to socio-ecological risks. We proposed that socio-ecological risk research coupled with ESs should focus on: 1) exploring the transmission mechanism between ecosystem processes, ecosystem services, and human well-being; 2) exploring the response mechanism of social subject behavior and its impacts on ecosystem services and human well-being; 3) construction of a multi-scale assessment model for social ecological risks coupled with ESs. The socio-ecological risk analysis framework for coupled ecosystem services was based on the mutual feedback between human and nature to explore the logic of risk formation, evolution, and governance, which could provide ideas for clarifying the deep meaning of ecological problems and selecting pathways to resolve socio-ecological risks.
    Applications of biofilm in environmental pollution control and the related challenges
    SHEN Dongsheng, XING Xiaojing, LONG Yuyang, HUI Cai
    2024, 35(5):  1426-1434.  doi:10.13287/j.1001-9332.202405.028
    Asbtract ( 337 )   PDF (2056KB) ( 33 )  
    Biofilm has been used in environmental pollution control in recent years due to its characteristics of adsorption and biodegradation. Beyond the success of its utilization in wastewater treatment, biofilm technique has high application value in the remediation of heavy metals and organic pollutants in soils. With the extensive attention and research of emerging pollutants such as microplastics and antibiotic resistance genes (ARGs), the pivotal role of biofilm can not be overlooked. Here, we presented a comprehensive review of the structure, formation mecha-nism, population, and functional aspects of biofilm, as well as its applications and mechanisms in environmental pollution control in recent years. We emphatically discussed the removal mechanism and application progress of biofilm on heavy metals and organic pollutants. We further expounded some novel environmental challenges posed by biofilm under new circumstances, including the coexistence of various pollutants in plastisphere, the spread of ARGs, and the accumulation of pathogens. Finally, we put forward the gaps of current research and prospects for future research, especially the importance of exploring the interaction relationship and mechanism between biofilm and various pollutants. It is expected to provide theoretical basis for the development of new technology of biofilm remediation.
    Status and perspective of soil fauna eco-geography in China
    ZHANG Weixin, SHEN Zhifeng, ZHAO Cancan, MA Zihe, YANG An, SHAO Yuanhu, ZHAO Jie, FU Shenglei
    2024, 35(5):  1435-1446.  doi:10.13287/j.1001-9332.202405.029
    Asbtract ( 368 )   PDF (2430KB) ( 53 )  
    As regulators of the surface land processes, soil fauna communities are the vital foundations for healthy terrestrial ecosystems. Soil fauna have been studied in China for more than 70 years. Great progresses have been achieved in exploring soil fauna species composition and geographical distribution patterns. Soil fauna eco-geography, as a bridge between soil fauna geographic patterns and ecosystem services, has a new development opportunity with the deep recognition of soil fauna ecological functions. Soil fauna eco-geography research could be partitioned into four dimensions including the spatio-temporal patterns of: 1) the apparent characteristics of soil fauna community, such as species composition, richness and abundance; 2) the intrinsic characteristics of soil fauna community, such as dietary and habits; 3) soil fauna-related biotic and abiotic interactions especially those indicating drivers of soil fauna community structure or shaping the roles of soil fauna in ecosystems; and 4) soil fauna-related or -regulated key ecological processes. Current studies focus solely on soil fauna themselves and their geographical distributions. To link soil fauna geography more closely with ecosystem services, we suggested that: 1) converting the pure biogeography studies to those of revealing the spatio-temporal patterns of the soil fauna-related or regulated key relationships and ecological processes;2) expanding the temporal and spatial scales in soil fauna geographical research;3) exploring the integrated analysis approach for soil fauna-related data with multi-scales, multi-factors, and multi-processes;and 4) establishing standard reference systems for soil fauna eco-geographical researches. Hence, the change patterns of ecological niche of soil fauna communities could be illustrated, and precision mani-pulations of soil fauna communities and their ecological functions would become implementable, which finally contributes to ecosystem health and human well-being.