[1] Ameztegui A, Cabon A, De Cáceres M, et al. Managing stand density to enhance the adaptability of Scots pine stands to climate change: A modelling approach. Ecologi-cal Modelling, 2017, 356: 141-150 [2] IPCC. Climate Change 2022: Mitigation of Climate Change. Working Group Ⅲ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2022 [3] Hartmann H, Moura CF, Anderegg WRL, et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytologist, 2018, 218: 15-28 [4] Anderegg WRL, Wu C, Acil N, et al. A climate risk analysis of Earth’s forests in the 21st century. Science, 2022, 377: 1099-1103 [5] Tao S, Chave J, Frison PL, et al. Increasing and widespread vulnerability of intact tropical rainforests to repeated droughts. Science, 2022, 119: e2116626119 [6] Smith T, Traxl D, Boers N. Empirical evidence for recent global shifts in vegetation resilience. Nature Climate Change, 2022, 12: 477-484 [7] Allen CD, Macalady AK, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259: 660-684 [8] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [9] 管崇帆, 郑京生, 李雅婧, 等.气候和密度对刺槐径向生长和干旱脆弱性的影响. 生态学报, 2023, 43(8): 3261-3272 [10] 张晓, 潘磊磊, Semyung K, 等. 沙地天然樟子松径向生长对干旱的响应. 北京林业大学学报, 2018, 40(7): 27-35 [11] 肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异. 应用生态学报, 2021, 32(10): 3487-3496 [12] 王少杰, 严铭海, 黄清麟, 等. 海南热带雨林国家公园杉木半天然林树干环剥效果[EB/OL]. (2024-12-23) [2025-03-21]. 生态学报. https://doi.org/10.20103/j.stxb.202408262018 [13] 樊容源, 叶绍明, 吴昊, 等. 不同林龄桉树人工林土壤细菌群落结构与功能多样性变化特征. 北京林业大学学报, 2024, 46(12): 41-52 [14] 李婷婷, 陆元昌, 姜俊, 等. 马尾松人工林森林经营模式评价. 西北林学院学报, 2015, 30(1): 164-171 [15] 邵青还. 对近自然林业理论的诠释和对我国林业建设的几项建议. 世界林业研究, 2003, 16(6) : 1-5 [16] 惠刚盈, 胡艳波, 赵中华. 再论“结构化森林经营”. 世界林业研究, 2009, 22(1): 14-19 [17] 惠刚盈, 胡艳波, 赵中华. 结构化森林经营研究进展. 林业科学研究, 2018, 31(1): 85-93 [18] Li J, Xie Y, Wulan T, et al. Drought resilience of Mongolian Scotch pine (Pinus sylvestris var. mongolica) at the southern most edge of its natural distribution: A comparison of natural forests and plantations. Forest Ecology and Management, 2023, 546: 121104 [19] Tonelli E, Vitali A, Brega F, et al. Thinning improves growth and resilience after severe droughts in Quercus subpyrenaica coppice forests in the Spanish Pre-Pyrenees. Dendrochronologia, 2022, 70: 126042 [20] 惠刚盈, 赵中华, 张弓乔, 等. 结构化森林经营理论与实践. 北京: 科学出版社, 2020: 170-173 [21] 王冬至, 张冬燕, 李永宁, 等. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型. 林业科学, 2019, 55(11): 85-94 [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级(GB/T20481—2017). 北京: 中国标准出版社, 2017 [23] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011,120: 1909-1920 [24] 刘亚玲, 信忠保, 李宗善, 等. 河北坝上樟子松人工林径向生长及其对气候因素的响应. 生态学报, 2022, 42(5): 1830-1840 [25] Kunz J, Löffler G, Bauhus J, et al. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 2018, 414: 15-27 [26] 于大炮, 周旺明, 周莉, 等. 长白山区阔叶红松林经营历史与研究历程. 应用生态学报, 2019, 30(5): 1426-1434 [27] 文韬. 营林措施对青海云杉林生长和乔木层碳储量的影响研究. 硕士论文. 兰州: 兰州大学, 2022 [28] 陈明辉, 惠刚盈, 胡艳波, 等. 结构化森林经营对东北阔叶红松林森林质量的影响. 北京林业大学学报, 2019, 41(5): 19-30 [29] Fang O, Zhang QB, Vitasse Y, et al. The frequency and severity of past droughts shape the drought sensitivity of juniper trees on the Tibetan plateau. Forest Ecology and Management, 2021, 493: 118968 [30] 孙昊慷, 韩佳轩, 贾建恒, 等. 不同林龄及径级樟子松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(11): 2942-2950 [31] 张子航, 王恒, 贾建恒, 等. 不同密度华北落叶松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(5): 1169-1176 [32] 阎弘, 孙滢洁, 刘滨辉, 等. 竞争对红松树木的干旱适应性及生长衰退影响. 北京林业大学学报, 2022, 44(6): 1-9 [33] Brodribb TJ, Powers J, Cochard H, et al. Hanging by a thread? Forests and drought. Science, 2020, 368: 261-266 [34] Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J, et al. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia, 2018, 187: 343-354 [35] Lechuga V, Carraro V, Viñegla B, et al. Reprint of “managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo”. Forest Ecology and Management, 2017, 406: 53-63 [36] 解萍萍, 张博弈, 董一博, 等. 华北落叶松和白杄径向生长对干旱的生态弹性差异. 应用生态学报, 2023, 34(7): 1779-1786 [37] Gazol A, Camarero JJ, Anderegg WL,et al. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Global Ecology and Biogeography, 2017,26: 166-176 [38] Chen M, Zhang X, Li M, et al. Climate-growth pattern of Pinus tabuliformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 2021, 494: 119642 [39] Fu T, Liang EY, Lu XM, et al. Tree growth responses and resilience after the 1950-Zayu-Medog earthquake, southeast Tibetan Plateau. Dendrochronologia, 2020, 62: 125724 [40] Mu YM, Zhang QB, Fang OY, et al. Pervasive tree-growth reduction in Tibetan juniper forests. Forest Ecology and Management, 2021, 480: 118642 |