[1] Xu L, He NP, Li MX, et al. Spatiotemporal dynamics of carbon sinks in China’s terrestrial ecosystems from 2010 to 2060. Resources Conservation and Recycling, 2024, 203: 107457 [2] Bu XY, Dong SC, Mi WB, et al. Spatial-temporal change of carbon storage and sink of wetland ecosystem in arid regions, Ningxia Plain. Atmospheric Environment, 2019, 204: 89-101 [3] Mitsch WJ, Bernal B, Nahlik AM, et al. Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28: 583-597 [4] 刘亚男, 郗敏, 张希丽, 等. 中国湿地碳储量分布特征及其影响因素. 应用生态学报, 2019, 30(7): 2481-2489 [5] 吕铭志, 盛连喜, 张立. 中国典型湿地生态系统碳汇功能比较. 湿地科学, 2013, 11(1): 114-120 [6] 李金帅, 郝天象, 杨萌, 等. 中国自然湿地生态系统碳循环关键过程及增汇途径. 中国科学: 地球科学, 2024, 54(8): 2478-2495 [7] 沈玉昌, 龚国元. 河流地貌学概论. 北京: 科学出版社, 1986: 103-152 [8] Courtwright J, Findlay SEG. Effects of microtopography on hydrology, physicochemistry, and vegetation in a tidal swamp of the Hudson River. Wetlands, 2011, 31: 239-249 [9] Li XF, Minick KJ, Luff J, et al. Effects of microtopo-graphy on absorptive and transport fine root biomass, necromass, production, mortality and decomposition in a coastal freshwater forested wetland, Southeastern USA. Ecosystems, 2020, 23: 1294-1308 [10] 孔涛, 张德胜, 寇涌苹, 等. 浑河上游典型植被河岸带土壤有机碳、全氮和全磷分布特征. 土壤, 2014, 46(5): 793-798 [11] 王先彦, 于洋. 试论河流地貌学的新进展和趋势. 地质科技通报, 2024, 43(1): 150-159 [12] 赵茜, 潘福霞, 李斌, 等. 山区河流底栖动物多样性和稳定性对土地利用方式的响应机制. 生态学报, 2024, 44 (17): 7844-7858 [13] 吕宪国. 湿地生态系统观测方法. 北京: 中国环境科学出版社, 2004: 94-110 [14] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 146-168 [15] Chantigny MH. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices. Geoderma, 2002, 113: 357-380 [16] Marriott EE, Wander MM. Total and labile soil organic matter in organic and conventional farming systems. Soil Science Society of America Journal, 2006, 70: 950-959 [17] Post WM, Emanuel WR, Zinke P, et al. Soil carbon pools and world life zones. Nature, 1982, 298: 156-159 [18] Bongiorno G, Bünemann EK, Oguejiofor CU, et al. Sensitivity of labile carbon fractions to tillage and orga-nic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 2019, 99: 38-50 [19] 高灯州, 曾从盛, 章文龙, 等. 水淹频率增加对闽江口湿地土壤有机碳及其活性组分的影响. 环境科学学报, 2016, 36(3): 974-980 [20] Yu JM, Wang XT, Yang SX, et al. Divergent response of blue carbon components to wetland types and hydrological effects in typical estuarine wetlands of Jiaozhou Bay, China. Journal of Environmental Management, 2023, 347: 119233 [21] 罗庆, 何清, 吴慧秋, 等. 辽河口湿地土壤有机碳组分特征及其影响因素. 生态环境学报, 2024, 33(3): 333-340 [22] 肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异. 生态学报, 2015, 35(23): 7625-7633 [23] 全桂香, 严金龙. 不同生态带下盐城滩涂湿地土壤颗粒和矿物结合有机碳特征. 地球与环境, 2010, 38(2): 214-218 [24] 王幼奇, 夏子书, 包维斌, 等. 银川鸣翠湖国家湿地公园香蒲、荷花、石菖蒲和芦苇生长区土壤有机碳及其组分含量对比研究. 湿地科学, 2020, 18(3): 294-302 [25] 金奇, 吴琴, 钟欣孜, 等. 鄱阳湖湿地水位梯度下不同植物群落类型土壤有机碳组分特征. 生态学杂志, 2017, 36(5): 1180-1187 [26] Chambers LG, Davis SE, Troxler T, et al. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia, 2014, 726: 195-211 [27] 杨平, 唐晨, 陆苗慧, 等. 亚热带河口区水库DOC和DIC浓度时空变化特征. 湖泊科学, 2021, 33(4): 1123-1137 [28] Huang F, Zhang W, Xue LH, et al. The microbial mechanism of maize residue decomposition under different temperature and moisture regimes in a Solonchak. Scientific Reports, 2025, 15: 2215 [29] Chen XB, Wang AH, Li Y, et al. Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture. Science of the Total Environment, 2014, 488: 268-274 [30] Moser KF, Ahn C, Noe GB. The influence of microtopography on soil nutrients in created mitigation wetlands. Restoration Ecology, 2009, 17: 641-651 [31] Lininger KB, Wohl E, Rose JR, et al. Significant floodplain soil organic carbon storage along a large high-latitude river and its tributaries. Geophysical Research Letters, 2019, 46: 2121-2129 [32] 李清鑫, 张珊, 张复茂, 等. 基于文献计量学的植物地下碳输入对土壤有机碳贡献的研究进展. 土壤通报, 2024, 55(6): 1777-1788 [33] 郭琦, 李谦维, 张灵柯, 等. 永定河河滨湿地土壤有机碳空间分布特征. 生态与农村环境学报, 2024, 40(6): 824-830 [34] Ritson JP, Graham NJD, Templeton MR, et al. The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective. Science of the Total Environment, 2014, 473: 714-730 [35] Cotrufo MF, Ranalli MG, Haddix ML, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12: 989-994 [36] Buckeridge KM, Mason KE, Ostle N, et al. Microbial necromass carbon and nitrogen persistence are decoupled in agricultural grassland soils. Communications Earth & Environment, 2022, 3: 114 [37] 苏兴雷, 渠晨晨, 康杰, 等. 微生物驱动土壤矿物结合态有机碳的形成. 科学通报, 2024, 69(22): 3327-3338 [38] 陈晓琴, 李小英, 陈梦婕, 等. 滇中元江栲林下土壤活性有机碳空间分布特征. 森林与环境学报, 2024, 44(1): 45-52 [39] 郭月峰, 祁伟, 姚云峰, 等. 小流域梯田土壤有机碳与土壤物理性质的关系研究. 生态环境学报, 2020, 29(4): 748-756 [40] Sun TT, Zhou J, Fu Y, et al. Soil nitrogen availability mediates the positive effects of intercropping on soil organic carbon at global scales. Soil & Tillage Research, 2024, 239: 106063 [41] Ma XL, Ma WM, Wang CT, et al. Nitrogen and phosphorus supply controls stability of soil organic carbon in alpine meadow of the Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 2025, 379: 109336 [42] Zhang YF, Ma ZB, Li XY, et al. Soil phosphorus availability is enhanced by nitrogen and litter addition during the growing season. Plant and Soil, 2024, 504: 847-859 [43] Battin TJ, Lauerwald R, Bernhardt ES, et al. River ecosystem metabolism and carbon biogeochemistry in a changing world. Nature, 2023, 613: 449-459 [44] 刘现刚. 我国国家湿地公园试点制建设情况概述. 浙江林业科技, 2023, 43(5): 112-117 |