Chinese Journal of Applied Ecology ›› 2024, Vol. 35 ›› Issue (8): 2291-2300.doi: 10.13287/j.1001-9332.202408.032
• Reviews • Previous Articles Next Articles
GAO Wenzhe, LI Tingqiang*
Received:
2024-02-05
Accepted:
2024-05-31
Online:
2024-08-18
Published:
2025-02-18
GAO Wenzhe, LI Tingqiang. Research progress on the impact and mechanisms of different passivators on soil organic carbon transformation[J]. Chinese Journal of Applied Ecology, 2024, 35(8): 2291-2300.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202408.032
[1] Balesdent J, Basile-Doelsch I, Chadoeuf J, et al. Atmosphere-soil carbon transfer as a function of soil depth. Nature, 2018, 559: 599-602 [2] Wang P, Chen H, Kopittke PM, et al. Cadmium contamination in agricultural soils of China and the impact on food safety. Environmental Pollution, 2019, 249: 1038-1048 [3] Renu K, Chakraborty R, Myakala H, et al. Molecular mechanism of heavy metals (lead, chromium, arsenic, mercury, nickel and cadmium)-induced hepatotoxicity: A review. Chemosphere, 2021, 271: 129735 [4] Lal R. Soil health and carbon management. Food and Energy Security, 2016, 5: 212-222 [5] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [6] Paul EA, Follett RF, Leavitt SW, et al. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics. Soil Science Society of America Journal, 1997, 61: 1058-1067 [7] Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 2019, 12: 46 [8] Chan KY, Conyers MK, Scott BJ. Improved structural stability of an acidic hardsetting soil attributable to lime application. Communications in Soil Science and Plant Analysis, 2007, 38: 2163-2175 [9] Blair GJ, Lefroy RDB, Lisle L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46: 1459-1466 [10] Cook BD, Allan DL. Dissolved organic carbon in old field soils: Compositional changes during the biodegradation of soil organic matter. Soil Biology and Bioche-mistry, 1992, 24: 595-600 [11] Klink S, Keller AB, Wild AJ, et al. Stable isotopes reveal that fungal residues contribute more to mineral-associated organic matter pools than plant residues. Soil Biology and Biochemistry, 2022, 168: 108634 [12] Sakai Y, Nakamura M, Wang C. Soil Carbon sequestration due to salt-affected soil amelioration with coal bio-briquette ash: A case study in Northeast China. Mine-rals, 2020, 10: 1019 [13] 罗会龙, 陈娟, 张云慧, 等. 改良剂调控下水稻镉累积和土壤溶解性有机质光谱特征的响应. 环境科学, 2022, 43(6): 3315-3327 [14] Inagaki TM, de Moraes Sá JC, Caires EF, et al. Lime and gypsum application increases biological activity, carbon pools, and agronomic productivity in highly weathered soil. Agriculture, Ecosystems & Environment,2016, 231: 156-165 [15] Olego MÁ, Quiroga MJ, Mendaña-Cuervo C, et al. Long-term effects of calcium-based liming materials on soil fertility sustainability and rye production as soil quality indicators on a typic palexerult. Processes, 2021, 9: 1181 [16] 陈安强, 付斌, 鲁耀, 等. 有机物料输入稻田提高土壤微生物碳氮及可溶性有机碳氮. 农业工程学报, 2015, 31(21): 160-167 [17] 王丽, 赵惠丽, 赵英. 生物质炭配施木灰对石灰性土壤固碳和微生物群落的影响. 土壤, 2022, 54(2): 320-328 [18] 尉吉乾, 倪春霄, 许思嘉, 等. 不同有机废弃物提升新围涂地土壤有机碳库与生物活性的效果. 农学学报, 2023, 13(1): 26-31 [19] 冀拯宇, 周吉祥, 张贺, 等. 不同土壤改良剂对盐碱土壤化学性质和有机碳库的影响. 农业环境科学学报, 2019, 38(8): 1759-1767 [20] 冯继红, 何季, 吴传美, 等. 复合钝化剂对原位镉污染土壤的钝化效果及白菜镉富集的影响. 热带作物学报, 2024, 45(5): 1084-1093 [21] 李梦丽, 徐墨馨, 陈永山, 等. 石灰性土壤添加不同量碳酸钙对秸秆有机碳矿化的影响. 生态环境学报, 2022, 31(10): 2002-2009 [22] Jones DL, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology and Biochemistry, 2012, 45: 113-124 [23] Hartley W, Riby P, Waterson J. Effects of three different biochars on aggregate stability, organic carbon mobi-lity and micronutrient bioavailability. Journal of Environmental Management, 2016, 181: 770-778 [24] 章明奎, Bayou WD, 唐红娟. 生物质炭对土壤有机质活性的影响. 水土保持学报, 2012, 26(2): 127-131 [25] 赵世翔. 热解温度对苹果枝条生物质炭理化性质及其环境效应的影响. 博士论文. 陕西杨凌: 西北农林科技大学, 2017 [26] Bennett JM, Greene RSB, Murphy BW, et al. Influence of lime and gypsum on long-term rehabilitation of a Red Sodosol, in a semi-arid environment of New South Wales. Soil Research, 2014, 52: 120 [27] 丁馨茹, 严宁珍, 王子芳, 等. 4种改良剂对酸性紫色土肥力及活性有机碳组分的影响. 环境科学, 2024, 45(3): 1655-1664 [28] Briedis C, Sá JCDM, Caires EF, et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma, 2012, 170: 80-88 [29] 李瑞东, 王小利, 段建军, 等. 碳酸钙对黄壤有机碳矿化及其温度敏感性的影响. 农业环境科学学报, 2022, 41(1): 115-122 [30] 董静超, 栗杰, 董越, 等. 外源氯化钙对土壤有机碳积累的影响. 山西农业大学学报: 自然科学版, 2020, 40(1): 122-128 [31] 黎红亮, 袁毳, 符云聪, 等. 钝化剂对中碱性农田土壤重金属镉及其在小麦中累积的影响. 生态与农村环境学报, 2023, 39(2): 244-249 [32] 袁艳丽. 典型钝化材料对土壤镉锌修复效果及根际微生物学特征影响研究. 硕士论文. 保定: 河北大学, 2022 [33] 杨彦明, 周祎, 张子健, 等. 增施磷石膏与不同耕作措施对碱土碳库和微生物群落结构的影响. 中国土壤与肥料, 2023(9): 34-42 [34] Rakhsh F, Golchin A, Beheshti AAA, et al. Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma, 2017, 307: 150-158 [35] 周吉祥, 张贺, 杨静, 等. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响. 中国农业科学, 2020, 53(16): 3307-3318 [36] 王月玲, 周凤, 张帆, 等. 施用生物炭对土壤呼吸以及土壤有机碳组分的影响. 环境科学研究, 2017, 30(6): 920-928 [37] 王强. 磷改性生物炭对镉污染土壤的修复及微生物响应机理. 博士论文. 陕西杨凌: 西北农林科技大学, 2022 [38] 曾秀君, 黄学平, 程坤, 等. 石灰组配有机改良剂对农田铅镉污染土壤微生物活性的影响. 环境科学研究, 2020, 33(10): 2361-2369 [39] 陈芬, 余高, 吴涵茜, 等. 中药渣生物有机肥对镉-汞复合污染土壤的钝化效果. 浙江大学学报: 农业与生命科学版, 2020, 46(6): 737-747 [40] 曹彬彬, 朱熠辉. 添加石灰和秸秆对塿土有机碳固持的影响. 中国农业科学, 2020, 53(20): 4215-4225 [41] Kim HS, Seo BH, Kuppusamy S, et al. A DOC coagulant, gypsum treatment can simultaneously reduce As, Cd and Pb uptake by medicinal plants grown in contaminated soil. Ecotoxicology and Environmental Safety, 2018, 148: 615-619 [42] 陈领, 王小利, 张青伟, 等. 外源碳酸钙对黔中喀斯特地区土壤有机碳矿化的影响. 山地农业生物学报, 2021, 40(1): 6-13 [43] 葛云辉, 苏以荣, 邹冬生, 等. 桂西北石灰土土壤有机碳矿化对外源有机物质和碳酸钙的响应. 生态学杂志, 2012, 31(11): 2748-2754 [44] 王润珑, 王农, 徐应明, 等. 海泡石对镉污染土壤团聚体稳定性和有机碳含量的影响. 水土保持学报, 2017, 31(6): 176-182 [45] 孙涛, 孙约兵, 贾宏涛, 等. 虾壳生物炭对Cd-As复合污染土壤修复效应及土壤可溶性有机碳含量的影响. 农业环境科学学报, 2021, 40(8): 1675-1685 [46] 付琳琳, 蔺海红, 李恋卿, 等. 生物质炭对稻田土壤有机碳组分的持效影响. 土壤通报, 2013, 44(6): 1379-1384 [47] 万清, 杨小渔, 吴丹, 等. 沙棘果渣还田对水稻土性质、温室气体排放和微生物数量的影响. 浙江大学学报: 农业与生命科学版, 2022, 48(4): 483-492 [48] 刘晓, 黄林, 郭康莉, 等. 施用无害化污泥影响土壤碳库组分和碳库管理指数的演变. 环境科学, 2017, 38(3): 1218-1226 [49] 黎嘉成, 高明, 田冬, 等. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响. 草业学报, 2018, 27(5): 39-50 [50] Powlson DS, Whitmore AP, Goulding KWT. Soil carbon sequestration to mitigate climate change: A critical reexamination to identify the true and the false. Euro-pean Journal of Soil Science, 2011, 62: 42-55 [51] Churchman GJ, Singh M, Schapel A, et al. Clay mine-rals as the key to the sequestration of carbon in soils. Clays and Clay Minerals, 2020, 68: 135-143 [52] Wu S, Tursenjan D, Sun Y. Independent and combined effects of sepiolite and palygorskite on humus spectral properties and heavy metal bioavailability during chicken manure composting. Chemosphere, 2023, 329: 138683 [53] Ndzana GM, Zhang Y, Yao S, et al. The adsorption capacity of root exudate organic carbon onto clay mineral surface changes depending on clay mineral types and organic carbon composition. Rhizosphere, 2022, 23: 100545 [54] Kaiser M, Wirth S, Ellerbrock RH, et al. Microbial respiration activities related to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils. Soil Biology and Biochemistry, 2010, 42: 418-428 [55] 李彬彬, 武兰芳, 许艳艳, 等. 秸秆还田土壤溶解性有机碳的官能团特征及其与CO2排放的关系. 农业环境科学学报, 2017, 36(12): 2535-2543 [56] 汪忠坪, 李钠钾, 汪代斌, 等. 有机无机配施对巫溪县植烟土壤碳库的影响. 西南农业学报, 2023, 36(2): 366-373 [57] 盛明, 龙静泓, 雷琬莹, 等. 秸秆还田对黑土团聚体内有机碳红外光谱特征的影响. 土壤与作物, 2020, 9(4): 355-366 [58] Schmidt MW, Torn MS, Abiven S, et al. Persistence of soil organic matter as an ecosystem property. Nature, 2011, 478: 49-56 [59] 陶漉, 马东豪, 张丛志, 等. 石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系. 土壤, 2021, 53(4): 715-722 [60] Messiga AJ, Ziadi N, Angers DA, et al. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations. Geoderma, 2011, 164: 225-231 [61] Jiang J, Zhang Z, Lin J, et al. The minimally effective dosages of nitenpyram and thiamethoxam seed treatments against aphids (Aphis gossypii Glover) and their potential exposure risks to honeybees (Apis mellifera). Science of the Total Environment, 2019, 666: 68-78 [62] Tejada M, Garcia C, Gonzalez JL, et al. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biology and Biochemistry, 2006, 38: 1413-1421 [63] Inagaki TM, de Moraes SJC, Caires EF, et al. Why does carbon increase in highly weathered soil under notill upon lime and gypsum use? Science of the Total Environment, 2017, 599-600: 523-532 [64] Andersson S, Nilsson SI, Saetre P. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology and Biochemistry, 2000, 32: 1-10 [65] Li Y, Wang T, Camps-Arbestain M, et al. Lime and/or phosphate application affects the stability of soil organic carbon: evidence from changes in quantity and chemistry of the soil water-extractable organic matter. Environmental Science & Technology, 2020, 54: 13908-13916 [66] López-Valdez F, Fernández-Luqueño F, Luna-Guido ML, et al. Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics. Applied Soil Ecology, 2010, 45: 225-231 [67] 周嗣江, 刘针延, 熊双莲, 等. 同步钝化土壤Cd和As材料的筛选. 环境科学, 2021, 42(7): 3527-3534 [68] 严建立, 章明奎, 王道泽. 磷石膏与石灰石粉配施对新垦红壤耕地的改良效果. 农学学报, 2022, 12(7): 33-37 [69] 程通, 王小兵, 董君能, 等. 原位钝化对稻田镉污染土壤修复效果及土壤酶活性的影响. 中国稻米, 2023, 29(2): 28-33 [70] Vizcayno C, Garcia-Gonzalez MT, Fernandez-Marcote Y, et al. Extractable forms of aluminum as affected by gypsum and lime amendments to an acid soil. Communications in Soil Science and Plant Analysis, 2001, 32: 2279-2292 [71] Cheng L, Zhang N, Yuan M, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. The ISME Journal, 2017, 11: 1825-1835 [72] 吴洪生, 陈小青, 周晓冬, 等. 磷石膏改良剂对江苏如东滨海盐土理化性状及小麦生长的影响. 土壤学报, 2012, 49(6): 1262-1266 [73] 胥娇, 李强. 石灰土演替过程中颗粒态有机质和矿物结合态有机质的微生物群落特征. 微生物学报, 2023, 63(6): 2153-2172 [74] 张迪, 吴晓霞, 丁爱芳, 等. 生物炭和熟石灰对土壤镉铅生物有效性和微生物活性的影响. 环境化学, 2019, 38(11): 2526-2534 [75] 郭安宁, 段桂兰, 赵中秋, 等. 施加碳酸钙对酸性土壤微生物氮循环的影响. 环境科学, 2017, 38(8): 3483-3488 [76] Mi J, Gregorich EG, Xu S, et al. Changes in soil biochemical properties following application of bentonite as a soil amendment. European Journal of Soil Biology, 2021, 102: 103251 [77] 王花, 商佳胤, 顾军, 等. 施钙对葡萄根际土壤酸碱度与酶活性的影响. 西北园艺(果树), 2022(5): 49-51 [78] Sun Y, Sun G, Xu Y, et al. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils. Journal of Environmental Management, 2016, 166: 204-210 [79] Abad-Valle P, álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil. Geoderma, 2016, 280: 57-66 [80] Wang S, Redmile-Gordon M, Shahbaz M, et al. Microbial formation and stabilisation of soil organic carbon is regulated by carbon substrate identity and mineral composition. Geoderma, 2022, 414: 115762 [81] Zhang P, Chen X, Wei T, et al. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil & Tillage Research, 2016, 160: 65-72 [82] 张鹏鹏, 濮晓珍, 张旺锋. 干旱区绿洲农田不同种植模式和秸秆管理下土壤质量评价. 应用生态学报, 2018, 29(3): 839-849 [83] 张秋, 尚艺婕, 史静. 生物质炭对Cd污染土壤团聚体酶活性的影响. 中国环境科学, 2021, 41(1): 307-315 [84] 白美霞, 司徒高铭, 李松昊, 等. 生物质炭配施有机物料对贫瘠红壤酶活性和微生物碳源代谢功能的影响. 应用生态学报, 2022, 33(5): 1283-1290 [85] Sheng Y, Zhan Y, Zhu L. Reduced carbon sequestration potential of biochar in acidic soil. Science of the Total Environment, 2016, 572: 129-137 [86] 任露陆, 蔡宗平, 张艳林, 等. 含磷材料对土壤重金属有效性及微生物响应. 环境科学与技术, 2022, 45(6): 37-46 [87] 周武先, 何银生, 朱盈徽, 等. 生石灰和钙镁磷肥对酸化川党参土壤的改良效果. 应用生态学报, 2019, 30(9): 3224-3232 [88] Xun W, Huang T, Zhao J, et al. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 2015, 90: 10-18 [89] Qin C, Yuan X, Xiong T, et al. Physicochemical pro-perties, metal availability and bacterial community structure in heavy metal-polluted soil remediated by montmorillonite-based amendments. Chemosphere, 2020, 261: 128010 [90] Li C, Dong Y, Yi Y, et al. Effects of phosphogypsum on enzyme activity and microbial community in acid soil. Scientific Reports, 2023, 13: 6189 [91] Groffman M, Fisk MC, Driscoll CT, et al. Calcium additions and microbial nitrogen cycle processes in a northern hardwood forest. Ecosystems, 2006, 9: 1289-1305 [92] Mavi MS, Marschner P, Chittleborough DJ, et al. Salinity and sodicity affect soil respiration and dissolved organic matter dynamics differentially in soils varying in texture. Soil Biology and Biochemistry, 2012, 45: 8-13 [93] Setia R, Marschner P, Baldock J, et al. Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 2011, 43: 1908-1916 [94] Li J, Wen Y, Li X, et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil and Tillage Research, 2018, 175: 281-290 [95] Pan F, Li Y, Chapman SJ, et al. Microbial utilization of rice straw and its derived biochar in a paddy soil. Science of the Total Environment, 2016, 559: 15-23 [96] Tun CC, Ikenaga M, Asakawa S, et al. Community structure of bacteria and fungi responsible for rice straw decomposition in a paddy field estimated by PCR-RFLP analysis. Soil Science and Plant Nutrition, 2002, 48: 805-813 [97] Condron L, Stark C, Callaghan M, et al. The role of microbial communities in the formation and decomposition of soil organic matter// Dixon GR, Tilston EL, eds. Soil Microbiology and Sustainable Crop Production Dordrecht: Springer Netherlands, 2010: 81-118 [98] Tang C, Rengel Z, Diatloff E, et al. Responses of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crops Research, 2003, 80: 235-244 [99] Rabbi SM, Daniel H, Lockwood PV, et al. Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity. Scientific Reports, 2016, 6: 33012 [100] Ding G, Pronk GJ, Babin D, et al. Mineral composition and charcoal determine the bacterial community structure in artificial soils. FEMS Microbiology Eco-logy, 2013, 86: 15-25 [101] 王润博, 王泽铭, 王红越, 等. 土壤稳定性有机碳组分与优势细菌门类陆向分布及相关性. 微生物学报, 2022, 62(6): 2389-2402 [102] Yang Y, Dou Y, Huang Y, et al. Links between soil fungal diversity and plant and soil properties on the Loess Plateau. Frontiers in Microbiology, 2017, 8: 2198 [103] Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology, 2012, 3: 348 [104] Zimmerman AR, Gao B, Ahn M. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 2011, 43: 1169-1179 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||