[1] Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nature Geoscience, 2019, 12: 46-53 [2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304: 1623-1627 [3] Cotrufo MF, Ranalli MG, Haddix ML, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12: 989-994 [4] Rocci KS, Lavallee JM, Stewart CE, et al. Soil organic carbon response to global environmental change depends on its distribution between mineral-associated and particulate organic matter: A meta-analysis. Science of the Total Environment, 2021, 793: 148569 [5] 王楚涵, 刘菲, 高健永, 等. 减氮覆膜下土壤有机碳组分含量的变化特征. 中国农业科学, 2022, 55(19): 3779-3790 [6] Li CZ, Zhao LH, Sun PS, et al. Deep soil C, N, and P stocks and stoichiometry in response to land use patterns in the loess hilly region of China. PLoS One, 2016, 11: e0159075 [7] 郭文芳, 李鑫, 陈艳梅, 等. 太行山坡地不同管理措施植被-土壤系统耦合关系. 生态学报, 2023, 43(15): 6170-6181 [8] 雷少刚, 王维忠, 李园园, 等. 北方大型露天矿区土壤有机碳库扰动与恢复研究. 煤炭科学技术, 2023, 51(12): 100-109 [9] 田昕, 赵勇钢, 刘啟霞, 等. 黄土丘陵区长期种植柠条坡地土壤饱和导水率及其影响因素. 中国水土保持科学, 2023, 21(4): 20-27 [10] 张国平. 半干旱地区柠条造林技术. 现代园艺, 2022, 45(18): 34-36 [11] 闫佳兴, 石文凯, 韩海荣, 等. 晋北黄土丘陵沟壑区柠条锦鸡儿叶功能性状特征及环境响应. 生态学杂志, 2023, 42(7): 1595-1603 [12] 王永强, 吕雯, 马晓梅, 等. 宁南带状柠条林地根系及土壤水分养分分布特征. 西北林学院学报, 2023, 38(1): 42-49 [13] 鲍士旦. 土壤农化分析. 第三版. 北京: 中国农业出版社, 2008: 34-35 [14] Sokol NW, Kuebbing SE, Karlsen-Ayala E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist, 2019, 221: 233-246 [15] 王燕, 武兴宝, 秦新惠, 等. 荒漠绿洲农田盐渍化过程中的土壤碳、氮、磷生态化学计量特征. 新疆农业科学, 2023, 60(8): 1996-2005 [16] 文丽, 李超, 程凯凯, 等. 不同农田模式下土壤有机碳、氮、磷及化学计量比的垂直分布特征. 湖南农业科学, 2023(2): 38-42 [17] Castellano MJ, Mueller KE, Olk DC, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept. Global Change Biology, 2015, 21: 3200-3209 [18] Angst G, Mueller KE, Castellano MJ, et al. Unlocking complex soil systems as carbon sinks: Multi-pool management as the key. Nature Communications, 2023, 14: 2967 [19] 姚忠凯. 玉米秸秆和生物炭添加对颗粒态、矿物结合态有机碳激发效应的影响. 博士论文. 重庆: 重庆三峡学院, 2023 [20] Xiao KQ, Zhao Y, Liang C, et al. Introducing the soil mineral carbon pump. Nature Reviews Earth & Environment, 2023, 4: 135-136 [21] Golchin A, Oades J, Skjemstad J, et al. Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Soil Research, 1994, 32: 285-309 [22] Loranger-Merciris G, Barthes L, Gastine A, et al. Rapid effects of plant species diversity and identity on soil microbial communities in experimental grassland ecosystems. Soil Biology and Biochemistry, 2006, 38: 2336-2343 [23] 秦树高. 柠条林草带状复合系统地下竞争关系研究. 博士论文. 北京: 北京林业大学, 2011 [24] 梁燊, 刘亚斌, 石川等. 黄土区不同龄期灌木柠条锦鸡儿根系的分布特征及其固土护坡效果. 农业工程学报, 2023, 39(15): 114-124 [25] 王国华, 宋冰, 席璐璐, 等. 晋西北丘陵风沙区不同林龄人工柠条生长与繁殖动态特征. 应用生态学报, 2021, 32(6): 2079-2088 [26] 王子寅, 刘秉儒, 李子豪, 等. 不同发育阶段柠条灌丛堆土壤生态化学计量学特征. 中国草地学报, 2023, 45(5): 9-19 [27] Cleveland C, Liptzin D. C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85: 235-252 [28] Hütsch BW, Augustin J, Merbach W. Plant rhizodeposition: An important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science, 2002, 165: 397-407 [29] 何亚婷, 何友均, 王鹏, 等. 不同经营模式对蒙古栎林土壤有机碳组分的长效性影响. 生态环境学报, 2023, 32(1): 11-17 [30] Villarino SH, Pinto P, Jackson RB, et al. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Science Advances, 2021, 7: eabd3176 [31] 樊廷录, 王淑英, 周广业, 等. 长期施肥下黑垆土有机碳变化特征及碳库组分差异. 中国农业科学, 2013, 46(2): 300-309 [32] Chao L, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2017, 2: 17105 [33] Liu FT, Qin SQ, Fang K, et al. Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw. Nature Communications, 2022, 13: 5073 [34] Dungait J, Hopkins D, Gregory A, et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 2012, 18: 1781-1796 [35] Bradford MA, Keiser AD, Davies CA, et al. Empirical evidence that soil carbon formation from plant inputs is positively related to microbial growth. Biogeochemistry, 2013, 113: 271-281 [36] Clemmensen KE, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339: 1615-1618 [37] Ren C, Zhao F, Kang D, et al. Linkages of C:N:P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376: 59-66 [38] 杨娥女. 黄土高原不同生态系统土壤有机碳特征和稳定性研究. 硕士论文. 杨凌: 西北农林科技大学, 2022 [39] 张琪琳, 王占礼, 王栋栋, 等. 黄土高原草地植被对土壤侵蚀影响研究进展. 地球科学进展, 2017, 32(10): 1093-1101 [40] Lavallee JM, Soong JL, Cotrufo MF. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 2020, 26: 261-273 [41] 梁尧, 韩晓增, 王凤菊, 等. 草地和农田生态系统中黑土活性有机碳的特征. 土壤通报, 2011, 42(4): 864-871 |