[1] 张雅婷, 叶旺敏, 熊德成, 等. 杉木幼树光合特性与生长的季节变化及其对土壤增温的响应. 应用生态学报, 2024, 35(1): 195-202 [2] 苟晓霞, 张同文, 袁玉江, 等. 阿尔泰山主要针叶树种树木径向生长及其对气候变化的响应. 应用生态学报, 2021, 32(10): 3594-3608 [3] IPCC. Climate Change 2022: Mitigation of Climate Change. Working Group Ⅲ Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2022 [4] Allen CD, Macalady AK, Chenchouni H, et al. A glo-bal overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259: 660-684 [5] 廉泓林, 李卫, 冯金超, 等. 科尔沁沙地典型固沙人工林地土壤水分时空特征及其对环境因子的响应. 生态学报, 2021, 41(20): 8256-8265 [6] 薛世玉, 崔之益, 徐谙为, 等. 海南不同降雨量地区桉树人工林与天然林及其他经济林分植被多样性差异研究. 热带作物学报, 2023, 44(5): 1039-1051 [7] 曹新光, 胡红兵, 李颖俊, 等. 亚热带人工和天然马尾松、杉木林生长对干旱的生态弹性差异. 应用生态学报, 2021, 32(10): 3531-3538 [8] Jiang L, Liu B, Guo H, et al. Assessing vegetation resilience and vulnerability to drought events in Central Asia. Journal of Hydrology, 2024, 634: 131012 [9] Lloret F, Keeling EG, Sala A. Components of tree resilience: Effects of successive low-growth episodes in old ponderosa pine forests. Oikos, 2011, 120: 1909-1920 [10] Wu X, Liu H, Li X, et al. Differentiating drought legacy effects on vegetation growth over the temperate Nor-thern Hemisphere. Global Change Biology, 2018, 24: 504-516 [11] Serra-Maluquer X, Mencuccini M, Martínez-Vilalta J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia, 2018, 187: 343-354 [12] 丁晓东, 华建春. 气候变化对塞罕坝地区天然华北落叶松径向生长的影响分析. 安徽农学通报, 2022, 28(11): 49-56 [13] 张子航, 王恒, 贾建恒, 等. 不同密度华北落叶松径向生长对干旱事件的响应. 应用生态学报, 2024, 35(5): 1169-1176 [14] 马志远, 高露双, 郭静, 等. TSAP软件和COFECHA软件交叉定年差异研究: 以长白山阔叶红松林优势树种红松为例. 四川农业大学学报, 2014, 32(2): 141-147 [15] 赵守栋, 江源, 焦亮, 等. ARSTAN程序和R语言dplR扩展包进行树轮年表分析的比较研究. 生态学报, 2015, 35(22): 7494-7502 [16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级(GB/T20481—2017). 北京: 中国标准出版社, 2017 [17] 解萍萍, 张博奕, 董一博, 等. 华北落叶松和白杄径向生长对干旱的生态弹性差异. 应用生态学报, 2023, 34(7): 1779-1786 [18] Briggs DG, Kantavichai R. Effects of thinning on ring mass growth along stem of Douglas fir in four Coastal Pacific Northwest sites. Forest Science, 2018, 64: 139-148 [19] Kunz J, Löffler G, Bauhus J. Minor European broadleaved tree species are more drought-tolerant than Fagus sylvatica but not more tolerant than Quercus petraea. Forest Ecology and Management, 2018, 414: 15-27 [20] 侯德乐, 李金宽, 彭剑峰, 等. 秦岭东缘龙池曼华山松径向生长对多源数据气候因子的响应. 生态学报, 2024, 44(3): 1191-1202 [21] 李镇江, 于晨一, 刘升云, 等. 伏牛山南坡3种针叶树径向生长对气候变化的响应. 应用生态学报, 2023, 34(5): 1178-1186 [22] 王恒, 王小雪, 贾建恒, 等. 华北落叶松径向生长对升温突变的响应. 应用生态学报, 2023, 34(10): 2629-2636 [23] 王婷, 于丹, 李江风, 等. 树木年轮宽度与气候变化关系研究进展. 植物生态学报, 2003, 27(1): 23-33 [24] Toledo M, Poorter L, Peña-Claros M, et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. Journal of Ecology, 2011, 99: 254-264 [25] 任启文, 王玉忠, 徐振华, 等. 基于水量平衡的华北落叶松人工林承载密度研究. 北京林业大学学报, 2024, 46(7): 1-8 [26] 靖娟利, 孙佳荟, 赵婷, 等. 西南地区植被NPP对多尺度气象干旱的响应. 水土保持学报, 2024, 38(3): 335-344 [27] 李祥友, 王兆鹏, 张冬有, 等. 气候因子对塔河樟子松径向生长的边际效应. 安徽农学通报, 2024, 30(5): 56-61 [28] 张晓, 吴梦婉, Kwon S, 等. 不同林龄樟子松人工林径向生长对气候及地下水位变化的响应. 生态学报, 2022, 42(16): 6827-6837 [29] Li JT, Xie YY, Wulan TY, et al. Drought resilience of Mongolian Scotch pine (Pinus sylvestris var. mongolica) at the southernmost edge of its natural distribution: A comparison of natural forests and plantations. Forest Ecology and Management, 2023, 542: 121104 [30] Wang B, Chen T, Li CJ, et al. Radial growth of Qinghai spruce (Picea crassifolia Kom.) and its leading influencing climate factor varied along a moisture gradient. Forest Ecology and Management, 2020, 476: 118474 [31] Phillips NG, Ryan MG, Bond BJ, et al. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology, 2003, 23: 237-245 [32] 申佳艳, 李帅锋, 黄小波, 等. 金沙江流域不同海拔处云南松生态弹性及生长衰退过程. 林业科学, 2020, 56(6): 1-11 [33] Chen M, Zhang X, Li M, et al. Climate-growth pattern of Pinus tabuliformis plantations and their resilience to drought events in the Loess Plateau. Forest Ecology and Management, 2021, 499: 119642 [34] Bennett AC, McDowell NG, Allen CD, et al. Larger trees suffer most during drought in forests worldwide. Nature Plants, 2015, 1: 15139 [35] Rowland L, Da Costa ACL, Galbraith DR, et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528: 119-122 [36] Matusick G, Ruthrof KX, Fontaine JB, et al. Eucalyptus forest shows low structural resistance and resilience to climate change-type drought. Journal of Vegetation Science, 2016, 27: 493-503 [37] 阎弘, 孙滢洁, 周婉莹, 等. 大兴安岭不同纬度兴安落叶松生长对干旱适应性及生长衰退的差异. 生态学报, 2023, 43(10): 3958-3970 [38] Lévesque M, Siegwolf R, Saurer M, et al. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions. New Phytologist, 2014, 203: 94-109 |