
Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (11): 3397-3407.doi: 10.13287/j.1001-9332.202511.032
• Original Articles • Previous Articles Next Articles
ZHENG Kezhen1, PAN Yongchun2*, SHE Dongli1, HUANG Yihua1, ZHAO Junhan1, SUN Xiaoqin2, WANG Hongde2
Received:2025-04-08
Accepted:2025-08-25
Online:2025-11-18
Published:2025-12-15
ZHENG Kezhen, PAN Yongchun, SHE Dongli, HUANG Yihua, ZHAO Junhan, SUN Xiaoqin, WANG Hongde. Aquatic plants promote denitrification and inhibit ammonia volatilization: A meta-analysis[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3397-3407.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202511.032
| [1] 刘明文, 孙昕, 李鹏飞, 等. 3种水生植物及其组合吸收去除水中氮磷的比较. 环境工程学报, 2021, 15(4): 1289-1298 [2] Mustafa HM, Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Engineering Journal, 2020, 12: 355-365 [3] 吕永强, 郑铭洁, 吴家森, 等. 不同减量氮肥配施紫云英对田面水氮磷流失及水稻生长的影响. 水土保持学报, 2022, 36(6): 148-155 [4] 王磊. 稻田氮素损失途径及影响因素研究进展. 安徽农业科学, 2024, 52(1): 7-13 [5] Ji YY, Shi WQ, Qin BQ. An indispensable role of overlying water in nitrogen removal in shallow lakes. Science of the Total Environment, 2024, 923: 171487 [6] Lu HJ, Chandran K, Stensel D. Microbial ecology of denitrification in biological wastewater treatment. Water Research, 2014, 64: 237-254 [7] 杨柳燕, 王楚楚, 孙旭, 等. 淡水湖泊微生物硝化反硝化过程与影响因素研究. 水资源保护, 2016, 32(1): 12-22 [8] 郭金金. 水氮调控与缓释氮肥-尿素配施对冬小麦/夏玉米生长和水氮利用的影响研究. 博士论文. 陕西杨凌: 西北农林科技大学, 2022 [9] Liao WH, Wang S, Liu CJ, et al. Measuring ammonia emissions from vegetable greenhouses with an inverse dispersion technique. Agricultural and Forest Meteoro-logy, 2019, 278: 107653 [10] 刘阳阳, 李亚芳, 虞娜, 等. 水氮调控对设施土壤氨挥发特征的影响. 水土保持学报, 2020, 34(5): 334-342 [11] Shi W, Zhu L, Dam BV, et al. Wind induced algal migration manipulates sediment denitrification N-loss patterns in shallow Taihu Lake, China. Water Research, 2022, 209: 117887 [12] 张玉娇, 庞桂斌, 余静, 等. 水氮互作对冬小麦农田NH3和N2O排放及产量的影响. 应用生态学报, 2024, 35(5): 1283-1292 [13] 白国梁. 浅水湖泊底质改良协同沉水植物修复及其微生态效应研究. 博士论文. 武汉: 中国地质大学, 2022 [14] 周淑贤, 傅明辉. 四种水生植物对富营养化水体中氮和磷的去除. 广东化工, 2024, 51(19): 23-25 [15] Veraart AJ, de Bruijne WJJ, de Klein JJM, et al. Effects of aquatic vegetation type on denitrification. Biogeochemistry, 2011, 104: 267-274 [16] Zhang D, Wang C, Zhou QH, et al. Sediments nitrogen cycling influenced by submerged macrophytes growing in winter. Water Science & Technology, 2021, 83: 1728-1738 [17] 朱彤, 李红, 周艳萍, 等. 肥料深施、红萍和土壤pH对稻田氨挥发的影响. 土壤学报, 2025, 62(1): 223-232 [18] 于鲁冀, 罗宗镔, 汤鹏, 等. 不同生活型水生植物组合对碳氮磷微污染水体净化的研究. 环境污染与防治, 2023, 45(7): 917-922 [19] Choudhury MI, Hallin S, Ecke F, et al. Disentangling the roles of plant functional diversity and plaint traits in regulating plant nitrogen accumulation and denitrification in freshwaters. Functional Ecology, 2022, 36: 921-932 [20] 李昌杰. 太湖反硝化脱氮的控制因素及其对蓝藻水华态势的影响. 硕士论文. 江苏无锡: 江南大学, 2023 [21] She DL, Wang HD, Yan XY, et al. The counter-balance between ammonia absorption and the stimulation of volati-lization by periphyton in shallow aquatic systems. Bioresource Technology, 2018, 248: 21-27 [22] Zhang SN, Xiao RL, Liu F, et al. Effect of vegetation on nitrogen removal and ammonia volatilization from wetland microcosms. Ecological Engineering, 2016, 97: 363-369 [23] Veraart AJ, Dimitrov MR, Schrier-Uijl AP, et al. Abundance, activity and community structure of denitrifiers in drainage ditches in relation to sediment characteristics, vegetation and land-use. Ecosystems, 2017, 20: 928-943 [24] Audet J, Olsen TM, Elsborg T, et al. Influence of plant habitats on denitrification in lowland agricultural streams. Journal of Environmental Management, 2021, 286: 112193 [25] Jacobs AE, Harrison JA. Effects of floating vegetation on denitrification, nitrogen retention, and greenhouse gas production in wetland microcosms. Biogeochemistry, 2014, 119: 51-66 [26] Soana E, Gavioli A, Tamburini E, et al. To mow or not to mow: Reed biofilms as denitrification hotspots in drainage canals. Ecological Engineering, 2018, 113: 1-10 [27] Li XH, Yan X, Han HJ, et al. The trade-off effects of water flow velocity on denitrification rates in open channel waterways. Journal of Hydrology, 2024, 637: 131374 [28] Kong YS, Zhang HK, Tian LL, et al. Relationships between denitrification rates and functional gene abundance in a wetland: The roles of single- and multiple-species plant communities. Science of the Total Environment, 2023, 863: 160913 [29] Fang JH, Tao YL, Liu J, et al. Effects of emergent plants on soil carbon-fixation and denitrification proce-sses in freshwater and brackish wetlands in a watershed in northern China. Geoderma, 2023, 430: 116311 [30] Benelli S, Ribaudo C, Bertrin V, et al. Effects of macrophytes on potential nitrification and denitrification in oligotrophic lake sediments. Aquatic Botany, 2020, 167: 103287 [31] Gao GF, Li PF, Zhong JX, et al. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Science of the Total Environment, 2019, 653: 231-240 [32] Forshay KJ, Dodson SI. Macrophyte presence is an indicator of enhanced denitrification and nitrification in sediments of a temperate restored agricultural stream. Hydrobiologia, 2011, 668: 21-34 [33] Hernandez ME, Mitsch WJ. Denitrification potential and organic matter as affected by vegetation community, wetland age, and plant introduction in created wetlands. Journal of Environmental Quality, 2007, 36: 333-342 [34] McCarty GW, Mookherji S, Angier JT. Characterization of denitrification activity in zones of groundwater exfiltration within a riparian wetland ecosystem. Biology and Fertility of Soils, 2007, 43: 691-698 [35] Soana E, Balestrini R, Vincenzi F, et al. Mitigation of nitrogen pollution in vegetated ditches fed by nitrate-rich spring waters. Agriculture, Ecosystems & Environment, 2017, 243: 74-82 [36] Cui NX, Zhang X, Cai M, et al. Does rice straw addition and/or Vallisneria natans (Lour.) planting contri-bute to enhancement in nitrate nitrogen and phosphorus removal in constructed wetlands under low temperature? Bioresource Technology, 2022, 350: 126896 [37] Wang YC, Li ZK, Zhou L, et al. Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake. Hydrobiologia, 2013, 700: 329-341 [38] 龙广丽, 严星, 夏永秋, 等. 洞庭湖区典型沟塘反硝化脱氮能力及其影响因素. 农业环境科学学报, 2023, 42(4): 842-851 [39] 刘莲, 汪涛, 任晓, 等.不同植物对沟渠沉积物反硝化速率及功能基因的影响研究.环境科学学报, 2019, 39(6): 1808-1815 [40] Castaldelli G, Aschonitis V, Vincenzi F, et al. The effect of water velocity on nitrate removal in vegetated waterways. Journal of Environmental Management, 2018, 215: 230-238 [41] Liu X, Huang SL, Tang TFZ, et al. Growth characteristics and nutrient removal capability of plants in subsurface vertical flow constructed wetlands. Ecological Engineering, 2012, 44: 189-198 [42] 赵婧宇, 韩建刚, 孙朋飞, 等. 周丛生物对稻田氨挥发的影响. 土壤学报, 2021, 58(5): 1267-1277 [43] Sun HJ, Dan A, Feng YF, et al. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere, 2019, 237: 124532 [44] Tao WD, Wang J. Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecological Engineering, 2009, 35: 836-842 [45] Luo B, Ge Y, Han WJ, et al. Decreases in ammonia volatilization in response to greater plant diversity in microcosms of constructed wetlands. Atmospheric Environment, 2016, 142: 414-419 [46] Hayashi K, Nishimura S, Yagi K. Ammonia volatilization from a paddy field following applications of urea: Rice plants are both an absorber and an emitter for atmospheric ammonia. Science of the Total Environment, 2008, 390: 485-494 [47] 任天一. 不同氮磷水平下沉水植物对水体反硝化脱氮和N2O排放的影响. 硕士论文. 南京: 南京信息工程大学, 2024 [48] de Paula Pereira ASA, de Siqueira CJ, Ribeiro VJ, et al. Organomineral fertilizers pastilles from microalgae grown in wastewater: Ammonia volatilization and plant growth. Science of the Total Environment, 2021, 779: 146205 [49] Song XN, Zhang JL, Li DH, et al. Nitrogen-fixing cyanobacteria have the potential to improve nitrogen use efficiency through the reduction of ammonia volatilization in red soil paddy fields. Soil and Tillage Research, 2022, 217: 105274 [50] de Assis LR, Calijuri ML, do Couto EA, et al. Microalgal biomass production and nutrients removal from domestic sewage in a hybrid high-rate pond with biofilm reactor. Ecological Engineering, 2017, 106: 191-199 [51] Li FB, Feng JF, Zhou XY, et al. Impact of rice-fish/shrimp co-culture on the N2O emission and NH3 volatilization in intensive aquaculture ponds. Science of the Total Environment, 2019, 655: 284-291 [52] Abulaiti A, She D, Zhang W, et al. Regulation of denitrification/ammonia volatilization by periphyton in paddy fields and its promise in rice yield promotion. Journal of the Science of Food and Agriculture, 2023, 103: 4119-4130 [53] Li H, Liang XQ, Lian YF, et al. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields. Soil Science Society of America Journal, 2009, 73: 1890-1895 [54] Burda BU, O’Connor EA, Webber EM, et al. Estimating data from figures with a web-based program: Considerations for a systematic review. Research Synthesis Methods, 2017, 8: 258-262 [55] 杨那, 毛晓涵, 李彦, 等. 农田土壤有机碳及活性碳组分对秸秆和地膜覆盖响应的Meta分析. 环境科学, 2024, 45(7): 1-13 [56] Viechtbauer W. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 2010, 36: 1-48 [57] 黄艺华, 佘冬立, 史祯琦, 等. 土壤盐分变化对N2O排放影响: 基于Meta分析. 环境科学, 2024, 45(4): 2313-2320 [58] Zhang Y, Sun SS, Gu XS, et al. Role of hydrophytes in constructed wetlands for nitrogen removal and greenhouse gases reduction. Bioresource Technology, 2023, 388: 129759 [59] Wang SY, Pi YX, Jiang YY, et al. Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution. Environmental Research, 2020, 180: 108867 [60] Xu YF, Lu J, Huang SS, et al. Submerged plants alleviated the impacts of increased ammonium pollution on anammox bacteria and nirS denitrifiers in the rhizosphere. Environmental Science and Pollution Research, 2021, 28: 58755-58767 [61] Chen JN, Liu XY, Lu TS, et al. The coupling of anammox with microalgae-bacteria symbiosis: Nitrogen removal performance and microbial community. Water Research, 2024, 252: 121214 [62] 任天一, 徐向华, 宋玉芝, 等. 太湖常见3种沉水植物附着生物的生物量及潜在反硝化速率. 湖泊科学, 2024, 36(1): 77-87 [63] 武淑霞, 刘宏斌, 刘申, 等. 农业面源污染现状及防控技术. 中国工程科学, 2018, 20(5): 23-30 [64] 张迎颖, 闻学政, 宋雪飞, 等. 冬春季生态沟渠对农田径流污染物的净化效果分析. 环境工程技术学报, 2024, 14(3): 897-906 [65] 郭柯凡, 王丰, 娄文月, 等. 有机种植对滨海稻田氨挥发特征及水稻产量的影响. 江苏农业科学, 2023, 51(10): 243-249 [66] Landi L, Valori F, Ascher J, et al. Root exudate effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biology & Biochemistry, 2006, 38: 509-516 [67] 孙慧. 人工湿地氨气排放的影响因素及减排措施研究. 硕士论文. 长春: 中国科学院东北地理与农业生态研究所, 2022 [68] 吴海露. 人工湿地中植物根系分泌物及其对脱氮过程的影响. 博士论文. 上海: 上海交通大学, 2018 [69] Zhang L, Liu H, Wang YX, et al. Transition from sulfur autotrophic to mixotrophic denitrification: Performance with different carbon sources, microbial community and artificial neural network modeling. Chemosphere, 2024, 366: 143432 [70] Ligi T, Truu M, Truu J, et al. Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and nosZ) abundances in a created rive-rine wetland complex. Ecological Engineering, 2014, 72: 47-55 [71] Liang YQ, Wu CF, Wei XM, et al. Characterization of nirS- and nirK-containing communities and potential denitrification activity in paddy soil from eastern China. Agriculture, Ecosystems & Environment, 2021, 319: 107561 [72] Allen CR, Burr M, Camper A, et al. Seasonality, C:N ratio and plant species influence on denitrification and plant nitrogen uptake in treatment wetlands. Ecological Engineering, 2023, 191: 106946 [73] Wang WB, Pan XJ, Shu X, et al. Direct evidence indicates that revegetation improves organic carbon limitation in sediment denitrification in a eutrophic headwater river. Ecological Engineering, 2024, 198: 107132 [74] 李如忠, 戴源, 刘晓薇, 等. 巢湖十五里河沉积物硝化速率的城乡梯度变化及相关性. 环境科学学报, 2019, 39(3): 688-695 [75] 李如忠, 王莉, 刘超. 巢湖滨岸水塘洼地沉积物反硝化速率及对外源碳氮的响应. 环境科学, 2020, 41(4): 1684-1691 [76] Qiao Z, Sun R, Wu YG, et al. Characteristics and meta-bolic pathway of the bacteria for heterotrophic nitrification and aerobic denitrification in aquatic ecosystems. Environmental Research, 2020, 191: 110069 [77] Yang D, Wang D, Chen S, et al. Denitrification in urban river sediment and the contribution to total nitrogen reduction. Ecological Indicators, 2021, 120: 106960 [78] 何军, 彭佳, 黄咸雨, 等. 沉积硅藻记录的近40年来神农架大九湖湿地生态水文变化. 应用生态学报, 2024, 35(8): 2247-2255 [79] 陈慧妍, 沙之敏, 吴富钧, 等. 稻蛙共作对水稻-紫云英轮作系统氨挥发的影响. 中国生态农业学报, 2021, 29(5): 792-801 [80] 杨国英, 郭智, 刘红江, 等. 稻田氨挥发影响因素及其减排措施研究进展. 生态环境学报, 2020, 29(9): 1912-1919 [81] 邱雨, 马增岭, 张子怡, 等. 水生态系统中微囊藻毒素的分布及其生态毒理效应研究进展. 应用生态学报, 2023, 34(1): 277-288 [82] 陈若谷, 胡正华, 曾科, 等. 稻田养萍模式下不同施氮量对稻田氨挥发及红萍生物固氮作用的影响. 土壤, 2023, 55(2): 245-253 [83] Liu XD, Chen LY, Hua ZL, et al. Comparing ammonia volatilization between conventional and slow-release nitrogen fertilizers in paddy fields in the Taihu Lake region. Environmental Science and Pollution Research, 2020, 27: 8386-8394 |
| [1] | YANG Wenfang, WANG Jingxia, NIE Haoliang, YANG Junfang, YANG Yunma, LIU Ketong, HUANG Shaohui, JIA Liangliang. Optimized fertilization effects of summer maize in Hebei Province and their influencing factors: A meta-analysis [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2685-2693. |
| [2] | GUO Zihua, HAO Huanhuan, MA Jie, ZHOU Ao, CUI Qingliang, CHEN Xiaopeng, ZHAO Xiang. Effects of restoration measures on soil organic carbon fractions in degraded grasslands in China [J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3327-3338. |
| [3] | GAO Bingyang, CHU Xu, REN Zhijie, WANG Yang, HUANG Yufang, YE Youliang, YANG Xue, ZHAO Yanan. Effects of nitrogen application rates on inorganic nitrogen and microbial nitrogen-transformation functional genes in wheat rhizosphere soil of North China Plain [J]. Chinese Journal of Applied Ecology, 2025, 36(10): 2929-2935. |
| [4] | WANG Xue, TONG Bingxin, SUN Mengyu, LI Changqing, SUN Zhimei. Effects of deep tillage on yield of maize based on national and regional scales: A meta-analysis [J]. Chinese Journal of Applied Ecology, 2025, 36(1): 152-160. |
| [5] | HUANG Lulu, ZHOU Huiling, WANG Qifan, ZHAO Xinran, CHEN Jinhui, YOU Chengming, XU Lin, TAN Bo, XU Zhenfeng, XU Hongwei. Responses of plant carbon, nitrogen, and phosphorus content in terrestrial ecosystems to warming: A Meta-analysis [J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2527-2534. |
| [6] | ZHANG Yujiao, PANG Guibin, YU Jing, ZHANG Haifeng, ZHANG Lizhi, WANG Xin, DONG Wenxu, XU Zhenghe. Effects of water-nitrogen interactions on NH3 and N2O emissions and yield in winter wheat cropland [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1283-1292. |
| [7] | XU Hao, WANG Yuwen, LUO Ziwei, HU Wenlang, LIAO Wenqiang, CHEN Lisong, LI Yan, GUO Jiuxin. Optimized nutrients management improved citrus yield and fruit quality in China: A meta-analysis [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1301-1311. |
| [8] | KONG Dongyan, YANG Lingfang, DIAO Jingwen, GUO Peng. Meta-analysis on the effects of nitrogen deposition on soil N2O flux in different habitats [J]. Chinese Journal of Applied Ecology, 2023, 34(8): 2171-2177. |
| [9] | CHEN Hui, ZHU Cheng, LIN Hong-lian, MA Hongliang, YIN Yunfeng, GAO Ren. Denitrification process of Casuarina root nodule endophyte Frankia [J]. Chinese Journal of Applied Ecology, 2023, 34(4): 1109-1116. |
| [10] | LI Wenhui, LIN Yanmin, NAN Xiongxiong, WANG Fang, ZHU Lizhen. Soil carbon and nitrogen sequestration and associated influencing factors in a sustainable cultivation system of fruit trees intercropped with cover crops [J]. Chinese Journal of Applied Ecology, 2023, 34(2): 471-480. |
| [11] | GAO Wei, LI Zishuang, XIE Jianzhi, ZHOU Xiaolin, DU Mengyang, WANG Xuexia, CHEN Yanhua, CAO Bing. Effect of single basal application of controlled-release blended fertilizer on reactive nitrogen loss, carbon and nitrogen footprint during summer maize growth period [J]. Chinese Journal of Applied Ecology, 2023, 34(12): 3322-3332. |
| [12] | WANG Meng-juan, HUANG Zhi-qun, ZHANG Bing-bing, SHI Xiu-zhen. Soil nitrification and denitrification in Cunninghamia lanceolata plantations with different stand ages [J]. Chinese Journal of Applied Ecology, 2023, 34(1): 18-24. |
| [13] | HU Wang, ZHAO Hang, ZHOU Xuan, WANG Yi-zhe, ZHANG Han-feng, ZHANG Yu-ping. Effect of reed-biochar application on ammonia volatilization from different types of soils [J]. Chinese Journal of Applied Ecology, 2022, 33(7): 1919-1926. |
| [14] | LIU Yu-zhen, LIU Wen-ting, YANG Xiao-xia, LI Cai-di, FENG Bin, YU Yang, ZHANG Chun-ping, DONG Quan-min. Effects of livestock grazing on the C:N:P stoichiometry in global grassland ecosystems: A meta analysis [J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1251-1259. |
| [15] | ZHANG Ya-qi, CHEN lin, PANG Dan-bo, HE Wen-qiang, LI Xue-bin, WU Meng-yao, CAO Meng-hao. Responses of soil microbial community structure to litter inputs. [J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2943-2953. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||