[1] Jasechko S, Sharp ZD, Gibson JJ, et al. Terrestrial water fluxes dominated by transpiration. Nature, 2013, 496: 347-350 [2] Fatichi S, Pappas C. Constrained variability of modeled T:ET ratio across biomes. Geophysical Research Letters, 2017, 44: 6795-6803 [3] Good SP, Noone D, Bowen G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 2015, 349: 175-177 [4] Kool D, Agam N, Lazarovitch N, et al. A review of approaches for evapotranspiration partitioning. Agricultural and Forest Meteorology, 2014, 184: 56-70 [5] Lian X, Piao SL, Huntingford C, et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018, 8: 640-646 [6] Shveytser V, Stoy PC, Butterworth B, et al. Evaporation and transpiration from multiple proximal forests and wetlands. Water Resources Research, 2024, 60: e2022WR-033757 [7] Lu XF, Liang LL, Wang LX, et al. Partitioning of evapo-transpiration using a stable isotope technique in an arid and high temperature agricultural production system. Agricultural Water Management, 2017, 179: 103-109 [8] Wang P, Yamanaka T, Li XY, et al. Partitioning evapo-transpiration in a temperate grassland ecosystem: Numerical modeling with isotopic tracers. Agricultural and Forest Meteorology, 2015, 208: 16-31 [9] 任小丽, 路倩倩, 何洪林, 等. 中国东部南北样带森林生态系统蒸腾与蒸散比值(T/ET)时空变化. 地理学报, 2019, 74(1): 63-75 [10] Wang LX, Niu SL, Good SP, et al. The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochimica et Cosmochimica Acta, 2013, 111: 28-38 [11] Zhou S, Yu BF, Zhang Y, et al. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resources Research, 2016, 52: 1160-1175 [12] Scott RL, Biederman JA. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes. Geophysical Research Letters, 2017, 44: 6833-6840 [13] Nelson JA, Carvalhais N, Cuntz M, et al. Coupling water and carbon fluxes to constrain estimates of transpiration: The TEA algorithm. Journal of Geophysical Research: Biogeosciences, 2018, 123: 3617-3632 [14] Lu XL, Liu ZQ, An SQ, et al. Potential of solar-induced chlorophyll fluorescence to estimate transpiration in a temperate forest. Agricultural and Forest Meteorology, 2018, 252: 75-87 [15] Shan N, Ju WM, Migliavacca M, et al. Modeling canopy conductance and transpiration from solar-induced chlorophyll fluorescence. Agricultural and Forest Meteoro-logy, 2019, 268: 189-201 [16] Cui JP, Tian LD, Wei ZW, et al. Quantifying the controls on evapotranspiration partitioning in the highest alpine meadow ecosystem. Water Resources Research,2020, 56: e2019WR024815 [17] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用遥感监测数据集(CNLUCC)[EB/OL]. (2018-12-12) [2024-07-06]. http://www.resdc.cn/DOI [18] 张永强, 何韶阳. 中国区域PML-V2陆地蒸散发与总初级生产力数据集(2000.02.26—2020.12.31)[EB/OL]. (2022-11-25) [2024-05-10]. https://cstr.cn/18406.11.Terre.tpdc.272389 [19] Zhang JL, Peng SZ. CDMet: 4 km Daily Gridded Meteo-rological Dataset for China from 2000 to 2020 [EB/OL]. (2024-04-12) [2024-08-15]. https://doi.org/10.5281/zenodo.10963932 [20] 张尧. 全球0.05°×0.05°日光诱导叶绿素荧光数据(2000—2022)[EB/OL]. (2023-02-20) [2024-04-12]. https://cstr.cn/18406.11.Ecolo.tpdc.271751 [21] 上官微, 李清亮, 石高松. 基于站点观测的中国1 km土壤湿度日尺度数据集(2000—2022)[EB/OL]. (2024-08-09) [2024-11-12]. https://cstr.cn/18406.11.Terre.tpdc.272415 [22] Jiang B, Zhang Y, Liang SL, et al. Surface daytime net radiation estimation using artificial neural networks. Remote Sensing, 2014, 6: 11031-11050 [23] Jiang B, Zhang Y, Liang SL, et al. Empirical estimation of daytime net radiation from shortwave radiation and ancillary information. Agricultural and Forest Meteorology, 2015, 211: 23-36 [24] Allen RG, Pereira LS, Raes D, et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: FAO, 1998: 89-101 [25] Li ZX, Feng Q, Liu W, et al. Spatial and temporal trend of potential evapotranspiration and related driving forces in Southwestern China, during 1961-2009. Quaternary International, 2014, 336: 127-144 [26] 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134 [27] Song YZ, Wang JF, Ge Y, et al. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience & Remote Sensing, 2020, 57: 593-610 [28] 孔晶晶, 昝梅, 王雪梅, 等. 新疆玛纳斯河流域植被水分利用效率时空格局及影响因素研究. 水资源与水工程学报, 2022, 33(6): 196-203 [29] 张若婧, 陈跃红, 张晓祥, 等. 基于参数最优地理探测器的江西省山洪灾害时空格局与驱动力研究. 地理与地理信息科学, 2021, 37(4): 72-80 [30] Wei ZW, Yoshimura K, Wang LX, et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 2017, 44: 2792-2801 [31] 赵娜娜, 刘钰, 蔡甲冰. 夏玉米生育期叶面蒸腾与棵间蒸发比例试验研究. 灌溉排水学报, 2009, 28(2): 5-8 [32] Bachand PA, Bachand S, Fleck J, et al. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone. Science of the Total Environment, 2014, 484: 232-248 [33] Wang LX, Good SP, Caylor KK. Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 2014, 41: 6753-6757 [34] Maes WH, Pagán BR, Martens B, et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sensing of Environment, 2020, 249: 112030 [35] Yuan RQ, Chang LL, Niu GY. Annual variations of T/ET in a semi-arid region: Implications of plant water use strategies. Journal of Hydrology, 2021, 603: 126884 [36] Zheng C, Wang SQ, Chen JM, et al. Modeling transpiration using solar-induced chlorophyll fluorescence and photochemical reflectance index synergistically in a closed-canopy winter wheat ecosystem. Remote Sensing of Environment, 2024, 302: 113981 [37] Beauclaire Q, De Cannière S, Jonard F, et al. Modeling gross primary production and transpiration from sun-induced chlorophyll fluorescence using a mechanistic light-response approach. Remote Sensing of Environment, 2024, 307: 114150 [38] De Cannière S, Herbst M, Vereecken H, et al. Constraining water limitation of photosynthesis in a crop growth model with sun-induced chlorophyll fluorescence. Remote Sensing of Environment, 2021, 267: 112722 [39] Cui ZL, Zhang Y, Wang AZ, et al. Forest evapotranspiration trends and their driving factors under climate change. Journal of Hydrology, 2024, 644: 132114 [40] Ouyang L, Wu J, Zhao P, et al. Consumption of precipi-tation by evapotranspiration indicates potential drought for broadleaved and coniferous plantations in hilly lands of South China. Agricultural Water Management, 2021, 252: 106927 [41] Salvucci GD, Gentine P. Emergent relation between surface vapor conductance and relative humidity profiles yields evaporation rates from weather data. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 6287-6291 [42] 郭大辛, 李傲翔, 刘恩科, 等. 气候变化背景下汾渭平原参考作物蒸散量的时空变化与归因分析. 应用生态学报, 2024, 35(6): 1625-1634 [43] Nie C, Huang YF, Zhang S, et al. Effects of soil water content on forest ecosystem water use efficiency through changes in transpiration/evapotranspiration ratio. Agricultural and Forest Meteorology, 2021, 308: 108605 [44] Koehler T, Wankmüller FJ, Sadok W, et al. Transpiration response to soil drying versus increasing vapor pressure deficit in crops: Physical and physiological mechanisms and key plant traits. Journal of Experimental Botany, 2023, 74: 4789-4807 [45] Lawrence DM, Thornton PE, Oleson KW, et al. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. Journal of Hydrometeorology, 2007, 8: 862-880 [46] Sumayao CR, Kanemasu ET, Hodges T. Soil moisture effects on transpiration and net carbon dioxide exchange of sorghum. Agricultural Meteorology, 1977, 18: 401-408 [47] 赵晓涵, 张方敏, 韩典辰, 等. 内蒙古半干旱区蒸散特征及归因分析. 干旱区研究, 2021, 38(6): 1614-1623 [48] Lu LJ, Zhang DW, Zhang J, et al. Ecosystem evapotranspiration partitioning and its spatial-temporal varia-tion based on eddy covariance observation and machine learning method. Remote Sensing, 2023, 15: 4831 [49] Medina S, Vicente R, Nieto-Taladriz MT, et al. The plant-transpiration response to vapor pressure deficit (VPD) in durum wheat is associated with differential yield performance and specific expression of genes involved in primary metabolism and water transport. Frontiers in Plant Science, 2019, 9: 1994 [50] Eichelmann E, Hemes KS, Knox SH, et al. The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento-San Joaquin River Delta, California. Agricultural and Forest Meteorology, 2018, 256: 179-195 [51] Miralles D, Jiménez C, Jung M, et al. The WACMOS-ET project. Part 2: Evaluation of global terrestrial evapo-ration data sets. Hydrology and Earth System Sciences, 2016, 20: 823-842 [52] Guo YD, Song CC, Zhang JS, et al. Influence of wetland reclamation on land-surface energy exchange and evapotranspiration in the Sanjiang Plain, Northeast China. Agricultural and Forest Meteorology, 2021, 296: 108214 [53] Zhou L, Zhou GS, Liu SH, et al. Seasonal contribution and interannual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3-year eddy covariance data. Hydrological Processes, 2010, 24: 1039-1047 |