
Chinese Journal of Applied Ecology ›› 2025, Vol. 36 ›› Issue (11): 3512-3522.doi: 10.13287/j.1001-9332.202511.011
• Reviews • Previous Articles Next Articles
LI Ming'en1,2, LAI Zeting1,2, TIAN Jihui1,2*
Received:2025-02-03
Accepted:2025-09-21
Online:2025-11-18
Published:2025-12-15
LI Ming'en, LAI Zeting, TIAN Jihui. Research progress and prospect on the regulation of intercropping on soil aggregate structure and function[J]. Chinese Journal of Applied Ecology, 2025, 36(11): 3512-3522.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cjae.net/EN/10.13287/j.1001-9332.202511.011
| [1] Oades JM. The role of biology in the formation, stabilization and degradation of soil structure: Soil structure/soil biota interrelationships. Geoderma, 1993, 56: 377-400 [2] 王清奎, 汪思龙. 土壤团聚体形成与稳定机制及影响因素. 土壤通报, 2005, 36(3): 415-421 [3] 刘学松, 王翼飞, 师嫄菲, 等. 基于根际生命共同体理论的根区土壤结构构建与调控. 植物营养与肥料学报, 2023, 29(5): 972-979 [4] Hudek C, Stanchi S, D'Amico M, et al. Quantifying the contribution of the root system of alpine vegetation in the soil aggregate stability of moraine. International Soil and Water Conservation Research, 2017, 5: 36-42 [5] Latati M, Aouiche A, Tellah S, et al. Intercropping maize and common bean enhances microbial carbon and nitrogen availability in low phosphorus soil under Mediterranean conditions. European Journal of Soil Biology, 2017, 80: 9-18 [6] Li XF, Wang ZG, Bao XG, et al. Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability, 2021, 4: 943-950 [7] Bedoussac L, Journet EP, Hauggaard-Nielsen H, et al. Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming: A review. Agronomy for Sustainable Development, 2015, 35: 911-935 [8] 段婉莹, 陈小莉, 冉志芳, 等. 中药材间作种植历史、模式及其案例分析. 中国中药杂志, 2024, 49(18): 4841-4846 [9] Yu Y, Stomph TJ, Makowski D, et al. Temporal niche differentiation increases the land equivalent ratio of annual intercrops: A meta-analysis. Field Crops Research, 2015, 184: 133-144 [10] 热伊罕古丽·喀迪尔, 刘文利, 周一诺, 等. 玉米多品种间作对土壤团聚体组成和稳定性的影响. 浙江农业学报, 2024, 36(6): 1339-1346 [11] 王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响. 水土保持学报, 2018, 32(3): 185-190 [12] 芦美, 赵吉霞, 李永梅, 等. 玉米间作马铃薯对根际土壤酶活性及团聚体稳定性的影响. 水土保持研究, 2023, 30(6): 123-132 [13] Hallett PD, Marin M, Bending GD, et al. Building soil sustainability from root-soil interface traits. Trends in Plant Science, 2022, 27: 688-698 [14] Jin K, White PJ, Whalley WR, et al. Shaping an optimal soil by root-soil interaction. Trends in Plant Science, 2017, 22: 823-829 [15] 谭文峰, 许运, 史志华, 等. 胶结物质驱动的土壤团聚体形成过程与稳定机制. 土壤学报, 2023, 60(5): 1297-1308 [16] Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. Journal of Soil Science, 1982, 33: 141-163 [17] 刘亚龙, 王萍, 汪景宽. 土壤团聚体的形成和稳定机制: 研究进展与展望. 土壤学报, 2023, 60(3): 627-643 [18] 刘均阳, 周正朝, 苏雪萌. 植物根系对土壤团聚体形成作用机制研究回顾. 水土保持学报, 2020, 34(3): 267-273 [19] Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79: 7-31 [20] Pérès G, Cluzeau D, Menasseri S, et al. Mechanisms linking plant community properties to soil aggregate stability in an experimental grassland plant diversity gra-dient. Plant and Soil, 2013, 373: 285-299 [21] de Baets S, Poesen J, Knapen A, et al. Impact of root architecture on the erosion-reducing potential of roots during concentrated flow. Earth Surface Processes and Landforms, 2007, 32: 1323-1345 [22] Materechera SA, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenised soils. Plant and Soil, 1992, 142: 69-79 [23] Poirier V, Roumet C, Munson AD. The root of the matter: Linking root traits and soil organic matter stabilization processes. Soil Biology & Biochemistry, 2018, 120: 246-259 [24] Bodner G, Leitner D, Kaul HP. Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 2014, 380: 133-151 [25] Angers DA, Caron J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry, 1998, 42: 55-72 [26] Yu RP, Yang H, Xing Y, et al. Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil, 2022, 476: 263-288 [27] Miller RM, Jastrow JD. Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biology and Biochemistry, 1990, 22: 579-584 [28] Jastrow JD, Miller RM, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biology and Biochemistry, 1998, 30: 905-916 [29] Poirier V, Roumet C, Angers DA, et al. Species and root traits impact macroaggregation in the rhizospheric soil of a Mediterranean common garden experiment. Plant and Soil, 2018, 424: 289-302 [30] Erktan A, Cecillon L, Graf F, et al. Increase in soil aggregate stability along a Mediterranean successional gradient in severely eroded gully bed ecosystems: Combined effects of soil, root traits and plant community characteristics. Plant and Soil, 2016, 398: 121-137 [31] Kang ZJ, Lou GC, Guo YY, et al. How does fine root influence aggregates? Comparing root diameter distribution of two herbaceous plants: A pot experiment. Journal of Soil Science and Plant Nutrition, 2023, 23: 6377-6391 [32] Traoré O, Groleau-Renaud V, Plantureux S, et al. Effect of root mucilage and modelled root exudates on soil structure. European Journal of Soil Science, 2000, 51: 575-581 [33] Ola A, Dodd IC, Quinton JN. Can we manipulate root system architecture to control soil erosion? Soil, 2015, 1: 603-612 [34] Baumert VL, Vasilyeva NA, Vladimirov AA, et al. Root exudates induce soil macroaggregation facilitated by fungi in subsoil. Frontiers in Environmental Science, 2018, 6: DOI: 10.3389/fenvs.2018.00140 [35] Batista AM, Nunes MR, Pessoa TN, et al. Seasonal variation of the rhizosphere soil aggregation in an Oxisol. Soil & Tillage Research, 2023, 231: 105741 [36] Naveed M, Brown LK, Raffan AC, et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. European Journal of Soil Science, 2017, 68: 806-816 [37] Bais HP, Weir TL, Perry LG, et al. The role of root exudates in rhizosphere interations with plants and other organisms. Annual Review of Plant Biology, 2006, 57: 233-266 [38] 冯固, 张玉凤, 李晓林. 丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响. 水土保持学报, 2001, 15(4): 99-102 [39] Denis A, Angers JC. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry, 1998, 42: 55-72 [40] Shipitalo MJ, ProtzR. Chemistry and micromorphology of aggregation in earthworm casts. Geoderma, 1989, 45: 357-374 [41] Neto LDD, da Silva ID, Inda AV, et al. Physical and chemical attributes of pedogenic aggregates and earthworm casts in different soil classes of Paraiba. Ciência e Agrotecnologia, 2010, 34: 1365-1371 [42] Marashi ARA, Scullion J. Earthworm casts form stable aggregates in physically degradedsoils. Biology and Fertility of Soils, 2003, 37: 375-380 [43] Gong X, Wang S, Wang ZW, et al. Earthworms modify soil bacterial and fungal communities through enhancing aggregation and buffering pH. Geoderma, 2019, 347: 59-69 [44] Lin FM, Jin YQ, Liu CG, et al. Termite mounds affect soil aggregate stability and aggregate-associated phosphorus forms in a tropical rubber plantation. Plant and Soil, 2024, 498: 93-109 [45] 陈彤. 两种植物源活性物质对白蚁免疫防御病原线虫的干扰机制. 硕士论文. 广州: 华南农业大学, 2021 [46] Caron J. Rate of response of structural stability to a change in water content: Influence of cropping history. Soil & Tillage Research, 1992, 25: 167-185 [47] Grevers MCJ, Jong EDE. The characterization of soil macroporosity of a clay soil under ten grasses using image analysis. Canadian Journal of Soil Science, 1990: 93-103 [48] Dexter AR. Amelioration of soil by natural processes. Soil & Tillage Research, 1991, 20: 87-100 [49] Han MG, Sun LJ, Gan DY, et al. Root functional traits are key determinants of the rhizosphere effect on soil organic matter decomposition across 14 temperate hardwood species. Soil Biology & Biochemistry, 2020, 151: 108019 [50] Tian XL, Wang CB, Bao XG, et al. Crop diversity faci-litates soil aggregation in relation to soil microbial community composition driven by intercropping. Plant and Soil, 2019, 436: 173-192 [51] Zhang S, Meng LB, Hou J, et al. Maize/soybean intercropping improves stability of soil aggregates driven by arbuscular mycorrhizal fungi in a black soil of northeast China. Plant and Soil, 2022,481: 63-82 [52] Zan ZM, Jiao NY, Ma RT, et al. Long-term maize intercropping with peanut and phosphorus application maintains sustainable farmland productivity by improving soil aggregate stability and P availability. Agronomy, 2023, 13: 2846 [53] 酒鹃鹃, 李永梅, 王梦雪, 等. 玉米大豆间作对坡耕地红壤团聚体分布及稳定性的影响. 江苏农业科学, 2021, 49(22): 219-228 [54] 王婷, 王强学, 李永梅, 等. 玉米大豆间作对作物根系及土壤团聚体稳定性的影响. 云南农业大学学报: 自然科学, 2021, 36(3): 507-515 [55] 李孝梅, 李永梅, 乌达木, 等. 玉米间作大豆、萝卜对红壤不同粒径水稳性团聚体碳氮分布的影响. 中国土壤与肥料, 2022(1): 104-111 [56] 程伟威, 王婷, 范茂攀, 等. 玉米不同种植模式对坡耕地红壤团聚体的影响. 湖北农业科学, 2019, 58(15): 33-38 [57] Lu M, Zhao JX, Lu ZR, et al. Maize-soybean intercropping increases soil nutrient availability and aggregate stability. Plant and Soil, 2023, 506: 441-456 [58] Ma RT, Yu N, Zhao SW, et al. Evaluation of the effects of long-term maize-peanut intercropping on soil aggregate stability based on different methods. Soil Use and Mana-gement, 2024, 40: e13015 [59] 白录顺, 范茂攀, 王自林, 等. 间作模式下玉米/大豆的根系特征及其与团聚体稳定性的关系. 水土保持研究, 2019, 26(1): 124-129 [60] 郁宁, 马任甜, 寇太记, 等. 基于不同方法评价玉米-花生垄作间作和施磷对土壤团聚体稳定性的影响. 植物营养与肥料学报, 2024, 30(11): 2053-2062 [61] 陈国峰, 姬强, 王亚麒, 等. 种植模式对宁南山区土壤团聚体和微生物多样性的影响. 中国土壤与肥料, 2023(9): 59-67 [62] 樊文霞, 李田甜, 陈国栋, 等. 间距对红枣间作苜蓿土壤团聚体有机碳、全氮及产量的影响. 中国土壤与肥料, 2023(8): 67-75 [63] 芦美, 王婷, 范茂攀, 等. 间作对马铃薯根系及坡耕地红壤结构稳定性的影响. 水土保持研究, 2023, 30(2): 67-73 [64] 王华, 向仰州, 郭颖, 等. 间作对刺梨园土壤水稳性团聚体及有机碳含量的影响. 贵州农业科学, 2019, 47(9): 88-92 [65] 吴传美, 何季, 吴文珊, 等. 间作对刺梨园土壤团聚体化学计量特征和养分贡献率的影响. 浙江农业学报, 2023, 35(5): 1132-1143 [66] Garland G, Bunemann EK, Oberson A, et al. Plant-mediated rhizospheric interactions in maize-pigeon pea intercropping enhance soil aggregation and organic phosphorus storage. Plant and Soil, 2017, 415: 37-55 [67] 陈洁. 小麦玉米大豆间作组合对土壤健康的影响评价. 硕士论文. 重庆: 西南大学, 2022 [68] Hadir S, Döring TF, Justes E, et al. Root growth and belowground interactions in spring wheat/faba bean intercrops. Plant and Soil, 2024, 506: 57-76 [69] Li L, Sun JH, Zhang FS, et al. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290 [70] Homulle Z, George TS, Karley AJ. Root traits with team benefits: Understanding belowground interactions in intercropping systems. Plant and Soil, 2022, 471: 1-26 [71] 王宇蕴, 李兰, 王瑞雪, 等. 不同磷水平下小麦-蚕豆间作根系形态的变化及其与内源激素的关系. 应用生态学报, 2020, 31(9): 3033-3039 [72] 王宇蕴, 李兰, 郑毅, 等. 基于根系形态对磷吸收的贡献解析小麦‖蚕豆间作促进磷吸收的作用. 中国生态农业学报(中英文), 2020, 28(7): 954-959 [73] 李金婷, 覃潇敏, 覃宏宇, 等. 间作对玉米根系形态特征及其氮磷养分吸收的影响. 南方农业学报, 2022, 53(5): 1348-1356 [74] 袁力行, 申建波, 崔振岭, 等. 植物营养学科发展报告. 农学学报, 2018, 8(1): 39-43 [75] 汪雪, 刘晓静, 王静, 等. 紫花苜蓿-燕麦连续间作下根系及土壤养分时空变化特征. 应用生态学报, 2023, 34(10): 2683-2692 [76] Li L, Li SM, Sun JH, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104: 11192-11196 [77] Li B, Li YY, Wu HM, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6496-6501 [78] Yu RP, Yang H, Xing Y, et al. Belowground processes and sustainability in agroecosystems with intercropping. Plant and Soil, 2022, 476: 263-288 [79] 王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响. 水土保持学报, 2018, 32(3): 185-190 [80] Yin XT, Zhang FF, Yu RP, et al. Root exudates drive root avoidance of maize in response to neighboring wheat. Plant and Soil, 2024, 510: 507-524 [81] Yu RP, Lambers H, Callaway RM, et al. Belowground facilitation and trait matching: Two or three to tango? Trends in Plant Science, 2021, 26: 1227-1235 [82] Duchene O, Vian JF, Celette F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms: A review. Agriculture, Ecosystems & Environment, 2017, 240: 148-161 [83] 徐香茹, 汪景宽. 土壤团聚体与有机碳稳定机制的研究进展. 土壤通报, 2017, 48(6): 1523-1529 [84] Cong WF, Hoffland E, Li L, et al. Intercropping enhances soil carbon and nitrogen. Global Change Biology, 2015, 21: 1715-1726 [85] Li GR, Yu CY, Shen PF, et al. Crop diversification promotes soil aggregation and carbon accumulation in global agroecosystems: A meta-analysis. Journal of Environmental Management, 2024, 350: 119661 [86] 孙涛, 冯晓敏, 高新昊, 等. 多样化种植对土壤团聚体组成及其有机碳和全氮含量的影响. 中国农业科学, 2023, 56(15): 2929-2940 [87] Peng YM, Xu HS, Wang Z, et al. Effects of intercropping and drought on soil aggregation and associated organic carbon and nitrogen. Soil Use and Management, 2023, 39: 316-328 [88] 乔鑫鑫, 王艳芳, 李乾云, 等. 复种模式对豫西褐土团聚体稳定性及其碳、氮分布的影响. 植物营养与肥料学报, 2021, 27(3): 380-391 [89] 向蕊, 伊文博, 赵薇, 等. 间作对土壤团聚体有机碳储量的影响及其氮调控效应. 水土保持学报, 2019, 33(5): 303-308 [90] 阮文亮, 彭松, 祝晓慧, 等. 减量施氮与间作大豆对甜玉米土壤团聚体及有机碳含量的影响. 四川农业大学学报, 2023, 41(5): 811-819 [91] Zhao XP, Hao CK, Zhang RQ, et al. Intercropping increases soil macroaggregate carbon through root traits induced microbial necromass accumulation. Soil Biology & Biochemistry, 2023, 185: 109146 [92] 杨继芬, 李永梅, 李春培, 等. 不同种植模式对坡耕地红壤团聚体中酶活性及养分含量的影响. 土壤, 2023, 55(4): 787-794 [93] 伊文博, 王顶, 李欢, 等. 施氮和间作对土壤团聚体钾素分配及作物钾吸收的影响. 生态学杂志, 2021, 40(2): 392-401 [94] Garland G, Bünemann EK, Oberson A, et al. Phosphorus cycling within soil aggregate fractions of a highly weathered tropical soil: A conceptual model. Soil Bio-logy and Biochemistry, 2018, 116: 91-98 [95] Mummey D, Holben W, Six J, et al. Spatial stratification of soil bacterial populations in aggregates of diverse soils. Microbial Ecology, 2006, 51: 404-411 [96] Trivedi P, Delgado-Baquerizo M, Jeffries TC, et al. Soil aggregation and associated microbial communities modify the impact of agriculturalmanagement on carbon content. Environmental Microbiology, 2017, 19: 3070-3086 [97] 杨继芬, 李永梅, 李春培, 等. 大豆玉米间作提高红壤团聚体中真菌群落结构和多样性. 植物营养与肥料学报, 2023, 29(5): 889-899 |
| [1] | HU Jiayu, GAO Bingyang, GAO Yifan, YANG Xue, HUANG Yufang, GUO Jingli, YE Youliang, ZHAO Yanan. Effect of combined application of nitrogen fertilizer and humic acid on soil quality and crop yield in sandy low-to-medium productivity farmland [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2639-2648. |
| [2] | ZHAO Haiping, GOU Mengmeng, CHEN Huiling, ZHU Sufeng, HU Ruyuan, LIU Changfu, XIAO Wenfa. Effects of stand age on soil aggregate stability and soil erodibility in Pinus massoniana plantations in the hilly region of central Hubei Province, China [J]. Chinese Journal of Applied Ecology, 2025, 36(9): 2729-2736. |
| [3] | CHEN Jiangfan, ZHANG Qiufang, ZHANG Xiaoqing, CHEN Linna, YUAN Xiaochun, XU Jianguo, ZENG Quanxin, CHEN Yuehmin. Long-term nitrogen addition facilitates phosphorus uptake by the roots of Phyllostachys pubescens [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2317-2324. |
| [4] | LIU Dayuan, MENG Dongyue, YU Chenyi, LI Junjie, GUAN Qingwei. Phosphorus fraction characteristics and influencing factors of soil aggregates in Quercus acutissima pure and mixed forests [J]. Chinese Journal of Applied Ecology, 2025, 36(8): 2344-2352. |
| [5] | SHI Ranqi, WANG Hansheng, DENG Wenkai, ZHANG Xia, LIU Yuping, HUANG Jian, HAN Gang. Effects of different tree forms and grass mulching on microclimate in Ziziphus jujuba orchards in the plain regions of southern Xinjiang, China [J]. Chinese Journal of Applied Ecology, 2025, 36(4): 1127-1134. |
| [6] | QIU Yufeng, TANG Ronggui, SHEN Yuye, CHEN Youchao, LIU Yihong, CAI Yanjiang. Effects of different earthworm densities on stability and organic carbon of soil aggregates in a Moso bamboo forest [J]. Chinese Journal of Applied Ecology, 2025, 36(3): 819-827. |
| [7] | ZHOU Shiqi, WU Jieling, WU Zehua, LIN Qiang, XI Jie, ZHOU Qin, ZHA Xuan. Differences in soil aggregates characteristics and soil detachment rate in degraded red soil among different vegetation restoration modes [J]. Chinese Journal of Applied Ecology, 2025, 36(3): 868-876. |
| [8] | YU Shujie, SHEN Rong, LIN Dunmei. Research advances in the impacts of ectomycorrhizal fungi on the formation and decomposition of soil organic matter in forests [J]. Chinese Journal of Applied Ecology, 2025, 36(3): 943-949. |
| [9] | WANG Chen, PENG Yilong, LIU Xinyu, CAO Tingting, SHI Man, WANG Zhikang, LI Quan, SONG Xinzhang. Effects of phosphorus addition on phosphorus acquisition strategies in Phyllostachys edulis rhizome roots [J]. Chinese Journal of Applied Ecology, 2025, 36(10): 3061-3068. |
| [10] | ZHANG Meng, CHENG Ruimei, SHEN Yafei, CHEN Tian, LI Jing, ZENG Lixiong, LEI Lei, XIAO Wenfa. Effects of smooth vetch covering on carbon accumulation from different sources in soil aggregates [J]. Chinese Journal of Applied Ecology, 2025, 36(1): 141-151. |
| [11] | WU Aomiao, HONG Zongwen, YOU Chengming, XU Lin, XU Hongwei, XU Zhenfeng, LUO Ziteng, TAN Bo. The stoichiometric characteristics of carbon, nitrogen, and phosphorus in soil aggregates of Cryptomeria japonica plantation with stand ages in the Rainy Area of Western China [J]. Chinese Journal of Applied Ecology, 2024, 35(9): 2518-2526. |
| [12] | WANG Ziying, GU Siyu, CHE Yanjing, FENG Jingyi, BAI Xueyan, ZHANG Weijian, HE Wanying. Soil organic carbon fractions and their stability under different land uses in wind erosion area of Northeast China [J]. Chinese Journal of Applied Ecology, 2024, 35(7): 1815-1824. |
| [13] | ZHU Xiaohui, TAN Jinglin, ZHOU Huiying, WANG Tianqi, ZHANG Bingbing, LU Xing, TIAN Jihui, LIANG Cuiyue, TIAN Jiang. Effects of different genotypes soybean and maize intercropping on soil phosphorus fractions and crop phosphorus uptake [J]. Chinese Journal of Applied Ecology, 2024, 35(6): 1583-1589. |
| [14] | WU Haibing, NIU Yuhui, LIANG Jing. Effects of food waste biogas residue composting on soil aggregates and its organic matter content in relocation site [J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1331-1336. |
| [15] | CHEN Linna, ZENG Quanxin, ZHANG Xiaoqing, ZHANG Qiufang, YUAN Xiaochun, DAI Hui, LI Wenzhou, CHEN Yuemin. Short-term nitrogen addition reduces soil microbial nitrogen fixation rate in subtropical Pinus taiwanensis and Castanopsis faberi forests [J]. Chinese Journal of Applied Ecology, 2024, 35(4): 917-925. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||