[1] 刘宇新. 武功山退化山地草甸土壤有机碳及团聚体稳定性研究. 硕士论文. 南昌: 江西农业大学, 2015 [2] 张穗粒, 盛茂银, 王霖娇, 等. 西南喀斯特长期植被修复对土壤有机碳组分的影响. 生态学报, 2023, 43(20): 8476-8492 [3] 师立鹏, 谷会岩, 王秀伟. 典型黑土区不同树种退耕还林地土壤活性有机碳差异及其影响因素. 生态学报, 2025, 45(1): 103-111 [4] 侯赛赛, 白懿杭, 王灿, 等. 土壤有机碳及其活性组分研究进展. 江苏农业科学, 2023, 51(13): 24-33 [5] 张扬, 李程远, 韩少杰, 等. 典型黑土区主要树种根系构型特征及其对固土能力的影响. 应用生态学报, 2021, 32(5): 1726-1734 [6] 隋鹏祥, 罗洋, 郑洪兵, 等. 长期耕作对农田黑土团聚体和有机碳稳定性的影响. 应用生态学报, 2023, 34(7): 1853-1861 [7] 杨小燕, 韩少杰, 陈祥伟. 退耕还林类型对黑土表层土壤活性有机碳分布特征的影响. 东北林业大学学报, 2015, 43(12): 41-44 [8] 袁慧兰, 郑甜甜, 林佳敏, 等. 农林土壤置换对植物残体分解过程的影响. 生态学杂志, 2024, 43(4): 1017-1024 [9] Giulia B, Else KB, Chidinma UO, et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 2019, 99: 38-50 [10] 沈杨阳, 白彦峰, 靳云铎, 等. 凋落物添加对不同龄级杉木林土壤养分与微生物特性的影响. 中南林业科技大学学报, 2022, 42(3): 114-125 [11] 李永涛, 魏海霞, 王莉莉, 等. 凋落物输入变化对黄河三角洲柽柳人工林土壤有机碳及其组分的影响. 东北林业大学学报, 2024, 52(7): 64-70 [12] 付淑月, 王天秀, 张清月, 等. 刺槐林凋落物输入量变化对土壤有机碳的影响. 西北农林科技大学学报: 自然科学版, 2021, 49(6): 18-26 [13] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 11-114 [14] 张羽涵, 李瑶, 周玥, 等. 宁南山区不同恢复年限柠条林土壤养分及有机碳组分变化特征. 应用生态学报, 2024, 35(3): 639-647 [15] Blair GJ, Lefroy RDB. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems. Australian Journal of Agricultural Research, 1995, 46: 1459-1466 [16] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006: 54-140 [17] Li H, Liu GL, Luo HP, et al. Labile carbon input and temperature effects on soil organic matter turnover in subtropical forests. Ecological Indicators, 2022, 145: 109726 [18] Cai Y, Feng XJ. Substrate and community regulations on microbial necromass accumulation from newly added and native soil carbon. Biology and Fertility of Soils, 2023, 59: 763-775 [19] Bai XJ, Zhai GQ, Wang BR, et al. Litter quality controls the contribution of microbial carbon to main microbial groups and soil organic carbon during its decomposition. Biology and Fertility of Soils, 2024, 60: 167-181 [20] 张毓涛, 李吉玫, 李翔, 等. 模拟氮沉降对天山云杉凋落叶分解及其养分释放的影响. 干旱区研究, 2016, 33(5): 966-973 [21] Gao F, Cui XY, Chen MD, et al. Forest conversion changes soil particulate organic carbon and mineral-associated organic carbon via plant inputs and microbial processes. Forests, 2023, 14: 15 [22] Joanna RR, Ember MM, Edward RB. Plant litter traits control microbial decomposition and drive soil carbon stabilization. Soil Biology and Biochemistry, 2022, 175: 10 [23] 钟萍, 卢志锋, 韦铄星, 等. 桂西北干热河谷典型森林类型土壤质量综合评价. 中南林业科技大学学报, 2024, 44(6): 156-164 [24] Yang J, He JH, Ling J, et al. Integrating metagenomics and metabolomics to study the response of microbiota in black soil degradation. Science of the Total Environment, 2023, 899: 13 [25] 杜忠, 陈尚香. 植物来源碳和土壤属性对土壤有机碳激发效应影响的研究进展. 土壤通报, 2025, 56(2): 580-592 [26] 李晓庆, 赵承森, 孟雨田, 等. 玉米秸秆对不同有机碳含量的黑土有机碳库的影响. 华南农业大学学报, 2018, 39(6): 39-46 [27] Yan JF, Wang L, Hu Y, et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 2018, 319: 194-203 [28] 黄靖宇, 宋长春, 张金波, 等. 凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响. 生态学报, 2008, 28(7): 3417-3424 [29] Yang XD, Ni K, MA LF, et al. 13C labelling of litter added to tea (Camellia sinensis L.) plantation soil reveals a significant positive priming effect that leads to less soil organic carbon accumulation. Agronomy, 2022, 12: 293 [30] 牟芝熠, 沈育伊, 曹杨, 等. 生物炭施用5 a后对桂北桉树人工林土壤有机碳组分的影响. 环境科学, 2023, 44(12): 6869-6879 [31] Wang RZ, Hu X. Freeze-thaw processes correspond to the protection-loss of soil organic carbon through regulating pore structure of aggregates in alpine ecosystems. Soil, 2024, 10: 859-871 [32] 李玉萍, 祝腾霄, 梅秀文, 等. 连续外源碳添加对土壤有机碳组分的影响. 土壤通报, 2024, 55(4): 974-981 [33] 郭晓伟, 张雨雪, 尤业明, 等. 凋落物输入对森林土壤有机碳转化与稳定性影响的研究进展. 应用生态学报, 2024, 35(9): 2352-2361 [34] Cheng XR, Xing WL, Liu JW. Litter chemical traits, microbial and soil stoichiometry regulate organic carbon accrual of particulate and mineral-associated organic matter. Biology and Fertility of Soils, 2023, 59: 777-790 [35] 章晓芳, 郑生猛, 夏银行, 等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征. 环境科学, 2020, 41(3): 1466-1473 [36] Yan SS, Song JM, Fan JS, et al. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China. Global Ecology and Conservation, 2020, 22: 12 [37] Dong HY, Shao S, Liang CF, et al. Impacts of litter composition on the structure and functional pathways of soil microbial community during Phyllostachys edulis expansion. Agronomy, 2022, 12: 220 [38] 李春丽, 董军, 王鸿斌, 等. 不同利用方式黑钙土有机碳组分剖面分布特征. 水土保持学报, 2022, 36(5): 304-310 [39] 林丹丹, 毕华兴, 赵丹阳, 等. 晋西黄土区不同密度刺槐林土壤有机碳组分及碳库特征. 生态环境学报, 2024, 33(3): 379-388 [40] 谢雷雷, 潘理, 李伟珍, 等. 典型黑土区防护林带和耕地土壤有机碳分布特征及其影响因素. 东北林业大学学报, 2024, 52(7): 71-76 |