[1] 杨倩, 孟广涛, 谷丽萍, 等. 草地生态系统服务价值评估研究综述. 生态科学, 2021, 40(2): 210-217 [2] 白永飞, 赵玉金, 王扬, 等. 中国北方草地生态系统服务评估和功能区划助力生态安全屏障建设. 中国科学院院刊, 2020, 35(6): 675-689 [3] 潘庆民, 杨元合, 黄建辉. 我国退化草原恢复的限制因子及需要解决的基础科学问题. 中国科学基金, 2023, 37(4): 571-579 [4] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681 [5] Luo XF, Dai YJ, Zheng C, et al. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist, 2021, 229: 950-962 [6] Matthus E, Wilkins KA, Swarbreck SM, et al. Phosphate starvation alters abiotic-stress-induced cytosolic free calcium increases in roots. Plant Physiology, 2019, 179: 1754-1767 [7] 吴德东, 刘志民, 曹宇. 半干旱风沙区“山水林田湖草沙”建设中防护林营建的原理与方法. 应用生态学报, 2024, 35(1): 17-24 [8] Pedrini S, Stevens JC, Dixon KW, et al. Seed encrusting with salicylic acid: A novel approach to improve establishment of grass species in ecological restoration. PLoS One, 2021, 16: e0242035 [9] Pedrini S, Merritt DJ, Stevens J, et al. Seed coating: Science or marketing spin? Trends in Plant Science, 2017, 22: 106-116 [10] 王琼, 南楠, 陈红刚, 等. 唐古特大黄种子丸粒化配方筛选及质量评价. 中药材, 2024(7): 1625-1629 [11] 任晓敏, 云岚, 艾芊, 等. 新麦草IPT基因亚细胞定位、过表达载体构建及鉴定. 西北植物学报, 2023, 43(9): 1441-1449 [12] 李珍, 云岚, 石子英, 等. 盐胁迫对新麦草种子萌发及幼苗期生理特性的影响. 草业学报, 2019, 28(8): 119-129 [13] 张海龙, 陈迎迎, 杨立新, 等. γ-氨基丁酸对植物生长发育和抗逆性的调节作用. 植物生理学报, 2020, 56(4): 600-612 [14] 尹美强, 王钰麒, 温艳杰, 等. γ-氨基丁酸引发增强谷子种子抗旱萌发的生理机制. 植物生理学报, 2023, 59(5): 923-931 [15] Zhou L, Yu JJ, Yan P, et al. Metabolic pathways regulated by abscisic acid, salicylic acid, and γ-aminobuty-ric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera). Physiologia Plantarum, 2017, 159: 42-58 [16] 王泳超, 张颖蕾, 闫东良, 等. 干旱胁迫下γ-氨基丁酸保护玉米幼苗光合系统的生理响应. 草业学报, 2020, 29(6): 191-203 [17] Amooaghaie R, Tabatabaei F, Ahadi A. Alterations in HO-1 expression, heme oxygenase activity and endogenous NO homeostasis modulate antioxidant responses of Brassica nigra against nano silver toxicity. Journal of Plant Physiology, 2018, 228: 75-84 [18] Noriega GO, Balestrasse KB, Batlle A, et al. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves. Biochemical and Biophysical Research Communications, 2004, 323: 1003-1008 [19] Shi SQ, Shi Z, Jiang ZP, et al. Effects of exogenous GABA on gene expression of Caragana intermedia roots under NaCl stress: Regulatory roles for H2O2 and ethy-lene production. Plant, Cell & Environment, 2010, 33: 149-162 [20] Chen Q, Gong CY, Ju X, et al. Hemin through the heme oxygenase 1/ferrous iron, carbon monoxide system involved in zinc tolerance in Oryza sativa L. Journal of Plant Growth Regulation, 2018, 37: 947-957 [21] Xuan W, Zhu FY, Xu S, et al. The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiology, 2008, 148: 881-893 [22] Diego SC, Natalia P, Carla Z, et al. Heme oxygenase up-regulation under ultraviolet-B radiation is not epigenetically restricted and involves specific stress-related transcriptions factors. Redox Biology, 2017, 12: 549-557 [23] 杜利霞, 董宽虎, 夏方山, 等. 盐胁迫对新麦草种子萌发特性和生理特性的影响. 草地学报, 2009, 17(6): 789-794 [24] 王莹, 许冬梅. PEG胁迫下五种禾本科牧草种子萌发期抗旱性研究. 北方园艺, 2015(12): 54-58 [25] 孟瑶. 氯化血红素(Hemin)增强玉米耐镉胁迫的生理生态机制及其大田验证研究. 博士论文. 哈尔滨: 东北农业大学, 2020 [26] 王萍, 张希吏, 石磊. 干旱胁迫下沙芥幼苗叶片光合特性和叶绿素荧光参数的变化. 干旱地区农业研究, 2017, 35(3): 159-163 [27] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. GB/T 2930.4—2017草种子检验规程 发芽试验. 北京: 中华人民共和国农业农村部, 2017 [28] Chen H, Cheng ZJ, Ma XD, et al. A knockdown mutation of YELLOW-GREEN LEAF2 blocks chlorophyll biosynthesis in rice. Plant Cell Reports, 2013, 32: 1855-1867 [29] Jin QJ, Cui WT, Dai C, et al. Involvement of hydrogen peroxide and heme oxygenase-1 in hydrogen gas-induced osmotic stress tolerance in alfalfa. Plant Growth Regulation, 2016, 80: 215-223 [30] Liu MM, Gao J, Wang N, et al. Effects of exogenous GABA on physiological characteristics of licorice seedlings under saline-alkali stress. Plant Stress, 2024, 11: 2667-064X [31] Xu B, Long Y, Feng XY, et al. GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications, 2021, 12: 1952 [32] Cheng PD, Yue QY, Zhang YT, et al. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple. Journal of Plant Physiology, 2023, 280: 153890 [33] Zheng TR, Zhan JY, Yang M, et al. Hemin-induced increase in saponin content contributes to the alleviation of osmotic and cold stress damage to Conyza blinii in a heme oxygenase 1-dependent manner. Journal of Zhejiang University-Science B, 2021, 22: 682-694 [34] Kaya C, Ugurlar F, Ashraf M, et al. Exploring the sy-nergistic effects of melatonin and salicylic acid in enhancing drought stress tolerance in tomato plants through fine-tuning oxidative-nitrosative processes and methylglyoxal metabolism. Scientia Horticulturae, 2023, 321: 112368 [35] 张志刚, 尚庆茂. 水杨酸和壳聚糖对NaCl胁迫下黄瓜种子萌发的促进作用. 中国蔬菜, 2010(8): 26-29 [36] 孙琳, 魏林源, 马全林, 等. 氟啶酮与赤霉素组合对沙米种子萌发与出苗的影响. 草业科学, 2024, 41(4): 802-809 [37] 芦光新, 李希来, 乔有明, 等. 丸粒化处理对几种牧草种子萌发及生理特性的影响. 草地学报, 2011, 19(3): 451-457 [38] Liu Z, Lan J, Li W, et al. Reseeding improved soil and plant characteristics of degraded alfalfa (Medicago sativa) grassland in loess hilly plateau region, China. Ecological Engineering, 2023, 190: 106933 [39] 马源, 王晓丽, 王彦龙, 等. 生态恢复领域草种丸粒化研究进展. 草业学报, 2023, 32(4): 197-207 |