应用生态学报 ›› 2016, Vol. 27 ›› Issue (11): 3727-3738.doi: 10.13287/j.1001-9332.201611.023
• • 上一篇
柳旭, 刘娟, 刘倩, 高娅妮, 王佺珍*
收稿日期:
2016-05-10
出版日期:
2016-11-18
发布日期:
2016-11-18
通讯作者:
E-mail: wangquanzhen191@163.com
作者简介:
柳 旭, 女, 1992年生, 硕士研究生. 主要从事牧草种质资源和牧草开发利用研究. E-mail: 1312879303@qq.com
基金资助:
LIU Xu, LIU Juan, LIU Qian, GAO Ya-ni, WANG Quan-zhen*
Received:
2016-05-10
Online:
2016-11-18
Published:
2016-11-18
Contact:
E-mail: wangquanzhen191@163.com
Supported by:
摘要: 种子在自然和农业生态系统中起重要作用,其发芽成苗对于植物物种生存繁衍具有决定性作用,但由于老化、休眠及生境恶化等问题经常导致其活力严重受损,所以探索提高种子萌发质量的方法具有深远的经济和生态意义.基于国内外最新研究,种子预处理是使植物优质、多抗、高产最实用有效的方法.本文综述了近年来的种子预处理技术及其生理生化响应,包括基因表达、细胞学效应、酶系统活性、物质能量代谢、抗氧化机制及信号传导途径.从种子发芽的不同阶段和提高抗逆性角度,阐明各预处理方法的作用机制,总结了各方法在细胞学、分子水平上的研究瓶颈以及实践应用上存在的问题.目前研究多集中于生化改变和酶活性的局部响应,缺乏以生产实践为目的的整体系统研究,为此,本文提出了对种子预处理研究的展望,旨在为今后种质资源保存、发展绿色高效农业和生态环境建设提供科学参考.
柳旭, 刘娟, 刘倩, 高娅妮, 王佺珍. 种子预处理的作用机制研究进展[J]. 应用生态学报, 2016, 27(11): 3727-3738.
LIU Xu, LIU Juan, LIU Qian, GAO Ya-ni, WANG Quan-zhen. Advances in research on mechanisms of seed pre-treatments.[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3727-3738.
[1] Yan X-F (闫兴富), Qiu Z-H (仇智虎), Zhang Q (张 嫱), et al. Effects of coat and sowing depth on seed germination and early seedling growth of Quercus wutaishanica. Chinese Journal of Applied Ecology (应用生态学报), 2014, 25(1): 584-589 (in Chinese) [2] Wang X-X (王小雪), Sun H-J (孙海菁), Liu Y (刘芸), et al. Effects of treating with concentrated sulfuric acid on the seed germination of ten Hibiscus hamabo provenance families. Chinese Journal of Applied Ecology (应用生态学报), 2012, 23(11): 2968-2974 (in Chinese) [3] Dong C-J (董春娟), Li L (李 亮), Cao N (曹 宁), et al. Roles of phenylalanine ammonia-lyase in low temperature tolerance in cucumber seedlings. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(7): 2041-2049 (in Chinese) [4] Liu B (刘 冰), Cao S (曹 莎), Zhou H (周 泓), et al. A study on cold tolerance difference and its mechanisms in azalea cultivars. Acta Horticulturae Sinica (园艺学报), 2016, 39(8): 1511-1520 (in Chinese) [5] Zhen J-H (甄江红), Liu G-H (刘果厚). Research advance in rare and endemic plant Tetraena mongolica Maxim. Chinese Journal of Applied Ecology (应用生态学报), 2008, 19(2): 433-440 (in Chinese) [6] Espanany A, Fallah S, Tadayyon A. Seed priming improves seed germination and reduces oxidative stress in black cumin (Nigella sativa) in presence of cadmium. Industrial Crops and Products, 2016, 79: 195-204 [7] Cheng J, Wang L, Zeng P, et al. Identification of genes involved in rice seed priming in the early imbibition stage. Plant Biology, 2016, 18: 1-9 [8] Wang J-L (王建林). Advanced Crop Physiology. Beijing: China Agriculture University Publishers, 2013 (in Chinese) [9] Liu HL, Shi X, Wang JC, et al. Effects of sand burial, soil water content and distribution pattern of seeds in sand on seed germination and seedling survival of Ere-mosparton songoricum (Fabaceae), a rare species inhabiting the moving sand dunes of the Gurbantunggut Desert of China. Plant and Soil, 2011, 345: 69-87 [10] Pietruszewski S, Martínez E. Magnetic field as a method of improving the quality of sowing material: A review. International Agrophysics, 2015, 29: 377-389 [11] Feizi H, Sahabi H, Moghaddam PR, et al. Impact of intensity and exposure duration of magnetic field on seed germination of tomato (Lycopersicon esculentum L.). Notulae Scientia Biologicae, 2012, 4: 116-120 [12] Kubisz L, Holubowicz R, Gauza M, et al. Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds. Acta Physica Polonica A, 2012, 121: A49-A53 [13] C′wintal M, Dziwulska-Hunek A. Effect of electromagnetic stimulation of alfalfa seeds. International Agrophy-sics, 2013, 27: 391-401 [14] Matwijczuk A, Kornarzyński K, Pietruszewski S. Effect of magnetic field on seed germination and seedling growth of sunflower. International Agrophysics, 2012, 26: 271-278 [15] Shabrangi A, Majd A. Effect of magnetic fields on growth and antioxidant systems in agricultural plants. Progress in Electromagnetics Research Symposium, Beijing, 2009: 23-27 [16] Maffei ME. Magnetic field effects on plant growth, development, and evolution. Frontiers in Plant Science, 2014, 5: 1-15 [17] Poinapen D, Toppozini L, Dies H, et al. Static magne-tic fields enhance lipid order in native plant plasma membrane. Soft Matter, 2013, 9: 6804-6813 [18] Wei Z, Jiao D, Xu J. Using Fourier transform infrared spectroscopy to study effects of magnetic field treatment on wheat (Triticum aestivum L.) seedlings. Journal of Spectroscopy, 2015, 2015: 1-6 [19] Tang J, Alsop RJ, Schmalzl K, et al. Strong static magnetic fields increase the gel signal in partially hydrated DPPC/DMPC membranes. Membranes, 2015, 5: 532-552 [20] Novitskii YI, Novitskaya GV, Serdyukov YA. Lipid utilization in radish seedlings as affected by weak horizontal extremely low frequency magnetic field. Bioelectromagnetics, 2014, 35: 91-99 [21] Shashurin M, Prokopiev I, Shein A, et al. Physiological responses of Plantago media to electromagnetic field of power-line frequency (50 Hz). Russian Journal of Plant Physiology, 2014, 61: 484-488 [22] Shabrangi A, Hassanpour H, Majd A, et al. Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia, 2015, 68: 272-279 [23] Hozayn M, EL-Mahdy AA, Abdel-Rahman H. Effect of magnetic field on germination, seedling growth and cytogenetic of onion (Allium cepa L.). African Journal of Agricultural Research, 2015, 10: 849-857 [24] da Silva JAT, Dobránszki J. Magnetic fields: How is plant growth and development impacted? Protoplasma, 2015, 253: 1-18 [25] Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus an-nuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 2010, 167: 149-156 [26] Belyavskaya N. Biological effects due to weak magnetic field on plants. Advances in Space Research, 2004, 34: 1566-1574 [27] Isaac AE, Oliveira MR, Almeida LA, et al. Effects of 60 Hz sinusoidal magnetic field on in vitro establishment, multiplication, and acclimatization phases of Coffea arabica seedlings. Bioelectromagnetics, 2014, 35: 414-425 [28] Shine M, Guruprasad K. Impact of pre-sowing magnetic field exposure of seeds to stationary magnetic field on growth, reactive oxygen species and photosynthesis of maize under field conditions. Acta Physiologiae Plantarum, 2012, 34: 255-265 [29] Ibrahum AH. Influence of different intensities of magne-tic field on germination, vegetative growth and some physiological aspects of salinity-stressed cucumber. Catrina: The International Journal of Environmental Sciences, 2015, 10: 93-102 [30] Xia L-H (夏丽华), Guo J-X (郭继勋). Effect of magnetic field on peroxide activation and isozyme in Leymus chinensis. Chinese Journal of Applied Ecology (应用生态学报), 2000, 11(5): 699-702 (in Chinese) [31] Ghanati F, Payez A. Iron biofortification and activation of antioxidant system of wheat by static magnetic field. Iranian Journal of Science and Technology, 2015, 39: 355-360 [32] Occhipinti A, de Santis A, Maffei ME. Magnetoreception: An unavoidable step for plant evolution? Trends in Plant Science, 2014, 19: 1-4 [33] Touati MA, Boughanmi NG, Salem MB, et al. Effects of moderate static magnetic field presowing treatment on seedling growth and oxidative status in two Raphanus sativus L. varieties. African Journal of Biotechnology, 2013, 12: 275-283 [34] Yu M, Liu H, Shi A, et al. Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrasonics Sonochemistry, 2016, 28: 334-340 [35] Miano A, Forti V, Abud H, et al. Effect of ultrasound technology on barley seed germination and vigour. Seed Science and Technology, 2015, 43: 297-302 [36] Shin YK, Baque MA, Elghamedi S, et al. Effects of activated charcoal, plant growth regulators and ultrasonic pre-treatments on ‘in vitro’ germination and protocorm formation of ‘Calanthe’ hybrids. Australian Journal of Crop Science, 2011, 5: 582-588 [37] Suslick KS. Sonochemistry. Science, 1990, 247: 1439-1445 [38] Chen YP, Liu Q, Yue XZ, et al. Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environmental Science and Pollution Research, 2013, 20: 4807-4816 [39] Ran H, Yang L, Cao Y. Ultrasound on seedling growth of wheat under drought stress effects. Agricultural Sciences, 2015, 6: 670-675 [40] Yang H, Gao J, Yang A, et al. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Research International, 2015, 77: 704-710 [41] Goussous SJ, Samarah NH, Alqudah AM, et al. Enhancing seed germination of four crop species using an ultrasonic technique. Experimental Agriculture, 2010, 46: 231-242 [42] Patero T, Augusto PE. Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrason Sonochem, 2015, 23: 11-15 [43] Wang QZ, Chen G, Yersaiyiti H, et al. Modeling analysis on germination and seedling growth using ultrasound seed pretreatment in Switchgrass. PLoS One, 2012, 7(10): e47204 [44] O’Sullivan J, Murray B, Flynn C, et al. The effect of ultrasound treatment on the structural, physical and emulsifying properties of animal and vegetable proteins. Food Hydrocolloids, 2016, 53: 141-154 [45] Chen G, Wang QZ, Liu Y, et al. Modelling analysis for enhancing seed vigour of switchgrass (Panicum virgatum L.) using an ultrasonic technique. Biomass and Bioenergy, 2012, 47: 426-435 [46] Kim HJ, Feng H, Kushad MM, et al. Effects of ultrasound, iIrradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157:H7. Journal of Food Science, 2006, 71: M168-M173 [47] Byeon JY, Choi EJ, Kim WJ. Effect of low frequency (20-35 kHz) airborne ultrasonication on microbiological and physicochemical properties of soybean Koji. Food Science and Biotechnology, 2015, 24: 1035-1040 [48] Liu J, Wang Q, Karagic D, et al. Effects of ultrasonication on increased germination and improved seedling growth of aged grass seeds of tall fescue and Russian wildrye. Scientific Reports, 2016, 6: 22403 [49] Kimura E, Fransen SC, Collins HP, et al. Breaking seed dormancy of switchgrass (Panicum virgatum): A review. Biomass and Bioenergy, 2015, 80: 94-101 [50] Chen G, Wang QZ, Liu Y, et al. Optimisation of sonication conditions to enhance seed vigour in switchgrass (Panicum virgatum). Seed Science and Technology, 2012, 40: 404-412 [51] Tang Q (汤 前), Shao J (邵 娇), Zhou Q (周 倩), et al. Effects of different treatments on seed germination of 4 wild grass species. Grassland and Turf (草原与草坪), 2015, 35(5): 37-42 (in Chinese) [52] Ferdosizadeh L, Sadat-Noori SA, Zare N, et al. Assessment laser pretreatments on germination and yield of wheat (Triticum aestivum L.) under salinity stress. World Journal of Agricultural Research, 2013, 1: 5-9 [53] Hernandez A, Dominguez P, Cruz O, et al. Laser in agriculture. International Agrophysics, 2010, 24: 407-422 [54] Podles′ny J, Stochmal A, Podles′na A, et al. Effect of laser light treatment on some biochemical and physiological processes in seeds and seedlings of white lupine and faba bean. Plant Growth Regulation, 2012, 67: 227-233 [55] Mohammadi S, Shekari F, Fotovat R, et al. Effect of laser priming on canola yield and its components under salt stress. International Agrophysics, 2012, 26: 45-51 [56] Al-Sherbini A, El-Gawad HA, Kamal M, et al. Potential of He-Ne laser irradiation and iron nanoparticles to increase growth and yield of pea. Nanotechnology, 2015, 3: 1435-1446 [57] Qiu Z, Li J, Zhang M, et al. He-Ne laser pretreatment protects wheat seedlings against cadmium-induced oxidative stress. Ecotoxicology and Environmental Safety, 2013, 88: 135-141 [58] Perveen R, Ali Q, Ashraf M, et al. Effects of different doses of low power continuous wave He-Ne laser radiation on some seed thermodynamic and germination parameters, and potential enzymes involved in seed germination of sunflower (Helianthus annuus L.). Photoche-mistry and Photobiology, 2010, 86: 1050-1055 [59] Jia Z, Duan J. Protecting effect of He-Ne laser on winter wheat from UV-B radiation damage by analyzing proteomic changes in leaves. Advances in Bioscience and Biotechnology, 2013, 4: 823-829 [60] Gao LM, Li YF, Han R. He-Ne laser preillumination improves the resistance of tall fescue (Festuca arundinacea Schreb.) seedlings to high saline conditions. Protoplasma, 2015, 252: 1135-1148 [61] Li L, Li JG, Shen MC, et al. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Scientific Reports, 2015, 5: 13033 [62] Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 2008, 99: 5104-5109 [63] Shang C (尚 晨), Han G-Q (韩贵清), Chen J-S (陈积山), et al. Effects on cold tolerance of M2 of Longmu No.803 alfalfa seed pre-treated with a mixed high-energy particle field. Acta Prataculture Sinica (草业学报), 18(6): 164-168 (in Chinese) [64] Chen YP, Liu YJ, Wang XL, et al. Effect of microwave and He-Ne laser on enzyme activity and biophoton emission of Isatis indigotica Fort. Journal of Integrative Plant Biology, 2005, 47: 849-855 [65] Chang YP, Tan MP, Lok WL, et al. Making use of guava seed (Psidium guajava L.): The effects of pre-treatments on its chemical composition. Plant Foods for Human Nutrition, 2014, 69: 43-49 [66] Gutiérrez HF, Pensiero JF, Zabala JM. Effect of population combinations on the reproductive success and germination of seeds of Bromus auleticus (Poaceae). Grass and Forage Science, 2015, 70: 176-184 [67] Siebers M, Brands M, Wewer V, et al. Lipids in plant-microbe interactions. Biochimica et Biophysica Acta, 2016, 1861: B1379-B1395 [68] Wang L-H (王莉衡), Ke Y (柯 杨), Qiang Y (强毅), et al. Inhibition effects and mechanisms of the entophytic fungus Trichoderma harzianum LH-7 from Aloe barbadensis. Chinese Journal of Applied Ecology (应用生态学报), 2014, 25(4): 1130-1136 (in Chinese) [69] Lyu H (吕 恒), Niu Y-C (牛永春), Deng H (邓 晖), et al. Suppression of three soil-borne diseases of cucumber by a rhizosphere fungal strain. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(12): 3759-3765 (in Chinese) [70] Liang J-G (梁建根), Zhang J-P (张建萍), Zhu L-H (竺利红), et al. Studies on the resistance to cabbage anthracnose induced by plant growth-promoting rhizobacteria NKl. Acta Horticulturae Sinica (园艺学报), 2008, 35(4): 595-598 (in Chinese) [71] Maj D, Wielbo J, Marek-Kozaczuk M, et al. Pretreatment of clover seeds with nod factors improves growth and nodulation of Trifolium pratense. Journal of Chemical Ecology, 2009, 35: 479-487 [72] Li K (李 可), Xu J-J (许建军), Wang L-Y (王路遥), et al. Effects of Acaulospora spinosa on plant growth and lycopene related genes (psy1 and psy2) expression of tomato. Chinese Journal of Applied Ecology (应用生态学报), 2016, 27(2): 499-503 (in Chinese) [73] Chon SU, Nelson CJ. Allelopathy in compositae plants: A review. Agronomy for Sustainable Development, 2010, 30: 349-358 [74] Scognamiglio M, D’Abrosca B, Esposito A, et al. Plant growth inhibitors: Allelopathic role or phytotoxic effects? Focus on Mediterranean biomes. Phytochemistry Reviews, 2013, 12: 803-830 [75] Carvalho F, Melo C, Machado M, et al. The allelopa-thic effect of eucalyptus leaf extract on grass forage seed. Planta Daninha, 2015, 33: 193-201 [76] Belgeri A, Adkins S. Allelopathic potential of invasive parthenium weed (Parthenium hysterophorus L.) seedlings on grassland species in Australia. Allelopathy Journal, 2015, 36: 1-14 [77] Iwai M, Kawakami T, Ikemoto T, et al. Molecular cha-racterization of a Penicillium chrysogenum exo-rhamnogalacturonan lyase that is structurally distinct from other polysaccharide lyase family proteins. Applied Microbiology and Biotechnology, 2015, 99: 8515-8525 [78] Iqbal A, Fry SC. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: Effects on epidermal cell growth in Amaranthus caudatus seedlings. Journal of Experimental Botany, 2012, 63: 2595-2604 [79] Yamada K, Hondo M, Shigemori H, et al. Physiological effects of lepidimoic acid (a stimulatory allelochemical) on cucumber cotyledons. Allelopathy Journal, 2010, 25: 497-502 [80] Thapa U, De N, Prasad P, et al. Study the efficacy of brassinolide and triacontanol on green and seed yield of Spinach-beet (Beta vulgaris var. bengalensis). Trends in Biosciences, 2014, 7: 870-875 [81] Kang Q-T (康青涛), Ji T-L (姬天龙), Lin D (林 栋), et al. Allelopathy of aqueous extract from Avena sativa on germination of 3 turf plants. Grassland and Turf (草原与草坪), 2014, 34(5): 11-15 (in Chinese) [82] Wang R, Feng Z, Liang X, et al. Comparative allelopathic and competitive abilities of 3-native forage le-gumes and the invasive weed Bidens pilosa L. Allelopathy Journal, 2012, 29: 297-306 [83] Li H-B (李宏博), Liu Y-J (刘延吉), Li T-L (李天来). The effect of GA3 on the relatived signal molecule changes during the breaking dormancy in Aralia elata seed. Acta Horticulturae Sinica (园艺学报), 2006, 33(8): 414-416 (in Chinese) [84] Song S-H (宋顺华), Song S-Q (宋松泉), Wu P (吴萍), et al. Thermoinhibition of Brassica rapa ssp. chinensis seed germination in relation to degrading enzymes of cell walls. Acta Horticulturae Sinica (园艺学报), 2014, 41(6): 1115-1124 (in Chinese) [85] Ma J-H (马金虎), Xing G-F (邢国芳), Yang X-H (杨小环), et al. Effects of exogenous EBR and NO signal on antioxidant system and low response gene expression under cold stress on maize embryo. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(5): 1411-1418 (in Chinese) [86] Dong C-C (董翠翠), Ma Y-Y (马岩岩), Xie R-J (谢让金), et al. Expression of two Citrus AP2/ERF genes under different hormone and stress treatments. Acta Horticulturae Sinica (园艺学报), 2016, 43(2): 239-248 (in Chinese) [87] Li L-L (李琳琳), Li T-L (李天来), Jiang G-B (姜国斌), et al. Synergistion mechanism of exogenous Ca2+ to SA-induced resistance to Botrytis cinerea in tomato. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(11): 3497-3502 (in Chinese) [88] Barba-Espin G, Nicolas E, Almansa MS, et al. Role of thioproline on seed germination: Interaction ROS-ABA and effects on antioxidative metabolism. Plant Physiology and Biochemistry, 2012, 59: 30-36 [89] Liu L-Y (刘零怡), Zhao D-Y (赵丹莹), Zheng Y (郑 杨), et al. Hydrogen peroxide metabolism and signal transduction under cold stress in plants. Acta Horticulturae Sinica (园艺学报), 2009, 36(11): 1701-1708 (in Chinese) [90] Bian L, Yang L, Wang JA, et al. Effects of KNO3 pretreatment and temperature on seed germination of Sorbus pohuashanensis. Journal of Forestry Research, 2013, 24: 309-316 [91] Xing J, Ni H, Li X, et al. Effects of different pre-treatments on the seed germination of Carex lasiocarpa. Journal of Coastal Research, 2015, 73: 805-808 [92] Zhang H, Tan ZQ, Hu LY, et al. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology, 2010, 52: 556-567 [93] Zhao Y (赵 莹), Yang K-J (杨克军), Li Z-T (李佐同), et al. Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(9): 2735-2742 (in Chinese) [94] Xu H-H (许会会), Liu W-X (刘维信), Sun Y (孙艳), et al. The effects of 5-azacytidine on DNA methy-lation and heat tolerance of seedlings of non-heading Chinese cabbage. Acta Horticulturae Sinica (园艺学报), 2012, 39(3): 567-573 (in Chinese) [95] Malekzadeh P. Influence of exogenous application of glycinebetaine on antioxidative system and growth of salt-stressed soybean seedlings (Glycine max L.). Phy-siology and Molecular Biology of Plants, 2015, 21: 225-232 [96] Sun YY, Sun YJ, Wang MT, et al. Effects of seed priming on germination and seedling growth under water stress in rice. Acta Agronomica Sinica, 2010, 36: 1931-1940 [97] Azharonok VV, Goncharik SV, Filatova II, et al. The effect of the high frequency electromagnetic treatment of the sowing material for legumes on their sowing quality and productivity. Surface Engineering and Applied Electrochemistry, 2009, 45: 318-328 [98] Qiu Z-B (邱宗波), Li F-M (李方民), Liu X (刘 晓), et al. Effect of NO on CO2 laser pretreatment inducing drought tolerance in wheat seedlings. Chinese Journal of Lasers (中国激光), 2008, 35(7): 1111-1115 (in Chinese) |
[1] | 王秀青, 王进鑫, 马戌, 张玉玉, 王怀彪, 王玉宝, 狄龙. 紫穗槐叶片浸提液对长柄扁桃种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2021, 32(1): 57-65. |
[2] | 李金鑫, 叶俊伟, 刘大会. 巴茅草水浸提液对3种作物种子萌发及幼苗生长的化感作用 [J]. 应用生态学报, 2020, 31(7): 2219-2226. |
[3] | 杭伟, 戈玉莹, 刘浩宇, 江浩然, 张世航, 陶冶. 羽枝青藓和瘤柄匐灯藓对入侵植物种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2020, 31(7): 2271-2278. |
[4] | 王昌辉, 刘青青, 文竹梅, 王子睿, 陈艳芳, 刘博, 王正宁. 红壤侵蚀区植被恢复过程中土壤种子库变化特征 [J]. 应用生态学报, 2020, 31(2): 417-423. |
[5] | 韦光领, 张士春, 蔡中华, 周进. 浮游植物孢囊的研究进展与生态意义 [J]. 应用生态学报, 2020, 31(2): 685-694. |
[6] | 张凌宇, 董灵波, 陈莹, 刘兆刚. 大兴安岭中部天然次生林种子雨动态 [J]. 应用生态学报, 2020, 31(12): 4035-4041. |
[7] | 刘静逸, 牛艳东, 郭克疾, 罗学卫, 杨蕊, 蒋丽娟. 南洞庭湖杨树清理迹地恢复初期土壤种子库特征及其与土壤因子的关系 [J]. 应用生态学报, 2020, 31(12): 4042-4050. |
[8] | 高玉莲, 李睿光, 常静, 李妍, 李海平. 油菜对3种作物种子萌发和幼苗生长的化感作用 [J]. 应用生态学报, 2020, 31(12): 4153-4160. |
[9] | 闫兴富, 邓晓娟, 王静, 周立彪, 张金峰, 罗永红. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响 [J]. 应用生态学报, 2020, 31(10): 3331-3339. |
[10] | 祁如林, 马文梅, 祁百元, 曹家豪, 杨亚军, 马海荣, 王一峰. 弯齿风毛菊花部器官的海拔变异及其与种子质量和数目的关系 [J]. 应用生态学报, 2019, 30(8): 2647-2653. |
[11] | 康海斌, 王得祥, 常明捷, 康冰, 于飞, 刘姝彤. 生境对啮齿动物介导下锐齿槲栎种子命运的影响 [J]. 应用生态学报, 2019, 30(7): 2249-2256. |
[12] | 卢彦磊, 张文辉, 杨斌, 王亚楠. 秦岭中段不同坡向锐齿栎种子雨、土壤种子库与幼苗更新 [J]. 应用生态学报, 2019, 30(6): 1965-1973. |
[13] | 钱多多, 匡旭, 王绪高, 蔺菲, 原作强, 叶吉, 郝占庆. 2006—2017年长白山阔叶红松林木本植物种子雨的时空动态 [J]. 应用生态学报, 2019, 30(5): 1487-1493. |
[14] | 柳旭,陈钊,刘倩,高娅妮,周文楠,崔雪雯,王佺珍. 超声波对3种老化牧草种子萌发和幼苗生长的影响 [J]. 应用生态学报, 2018, 29(6): 1857-1866. |
[15] | 朱晨曦, 刘志刚, 于洋洋, 刘青青, 赵冲, 郑晓阳, 王正宁, 刘博. 杉木人工林种子雨组成和季节动态 [J]. 应用生态学报, 2018, 29(5): 1515-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||