[1] WMO. Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observation through 2017. Tokyo: The World Data Centre for Greenhouse Gases, 2018 [2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013 [3] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021 [4] 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8 [5] Porter JR, Xie L, Challinor AJ, et al. Climate Change 2014: Impacts, Adaptation and Vulnerability. Chapter 7: Food Security and Food Production Systems. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014: 485-533 [6] 凌霄霞, 张作林, 翟景秋, 等. 气候变化对中国水稻生产的影响研究进展. 作物学报, 2019, 45(3): 323-334 [7] FAO. FAOSTAT Food and Agriculture Data[EB/OL]. (2021-12-12)[2023-03-24]. http://www.fao.org/faostat/zh/#data/QC [8] Seck PA, Diagne A, Mohanty S, et al. Crops that feed the world 7: Rice. Food Security, 2012, 4: 7-24 [9] Kobayashi T, Ishiguro K, Nakajima T, et al. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology, 2006, 96: 425-431 [10] Kumar A, Nayak AK, Sah RP, et al. Effects of elevated CO2 concentration on water productivity and antioxidant enzyme activities of rice (Oryza sativa L.) under water deficit stress. Field Crops Research, 2017, 212: 61-72 [11] Glaubitz U, Erban A, Kopka J, et al. High night temperature strongly impacts TCA cycle, amino acid and polyamine biosynthetic pathways in rice in a sensitivity-dependent manner. Journal of Experimental Botany, 2015, 66: 6385-6397 [12] 张桂莲, 廖斌, 汤平, 等. 灌浆结实期高温对水稻剑叶生理特性和稻米品质的影响. 中国农业气象, 2014, 35(6): 650-655 [13] 傅聿青, 贾漫丽, 王军, 等. NaCl胁迫下2个桑树品种的脯氨酸、可溶性糖、可溶性蛋白含量变化研究. 林业与生态科学, 2018, 33(3): 306-310 [14] Vaughan MM, Huffaker A, Schmelz EA, et al. Effects of elevated[CO2] on maize defence against mycotoxigenic Fusarium verticillioides. Plant, Cell and Environment, 2014, 37: 2691-2706 [15] Mina U, Kumar R, Gogoi R, et al. Effect of elevated temperature and carbon dioxide on maize genotypes health index. Ecological Indicators, 2019, 105: 292-302 [16] 贾雨薇, 杨瑞林, 张洋, 等. 一种优化的测定水稻硅含量的方法. 植物学报, 2016, 51(5): 679-683 [17] Giannopolitis CN, Ries SK. Superoxide dismutases. II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 1977, 59: 315-318 [18] Li YG, Tanner G, Larkin P. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. Journal of the Science of Food and Agriculture, 1996, 70: 89-101 [19] 陈刚, 李胜. 植物生理学实验. 北京: 高等教育出版社, 2016: 36-61 [20] 国家气象局. 农业气象观测规范-作物分册. 北京: 气象出版社, 1993: 33-34 [21] Andrews SS, Mitchell JP, Mancinelli R, et al. On-farm assessment of soil quality in California’s Central Valley. Agronomy Journal, 2002, 94: 12-23 [22] Andrews SS, Carroll CR. Designing a soil quality assessment tool for sustainable agroecosystem management. Ecological Applications, 2001, 11: 1573-1585 [23] Sharma KL, Mandal UK, Srinivas K, et al. Long-term soil management effects on crop yields and soil quality in a dryland Alfisol. Soil and Tillage Research, 2005, 83: 246-259 [24] Banerjee V, Krishnan P, Das B, et al. Crop status index as an indicator of wheat crop growth condition under abiotic stress situations. Field Crops Research, 2015, 181: 16-31 [25] 农业农村部全国农业技术推广服务中心. GB/T 15790—2009 稻瘟病测报调查规范. 北京: 中国标准出版社, 2009: 2-3 [26] Candogan BN, Sincik M, Buyukcangaz H, et al. Yield, quality and crop water stress index relationships for deficit-irrigated soybean[Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management, 2013, 118: 113-121 [27] Kumar N, Shankhdhar SC, Shankhdhar D. Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian Journal of Plant Physiology, 2016, 21: 37-43 [28] 王艳, 高鹏, 黄敏, 等. 高温对水稻开花期剑叶抗氧化酶活性及基因表达的影响. 植物科学学报, 2015, 33(3): 355-361 [29] 甄博, 周新国, 陆红飞, 等. 高温与涝交互胁迫对水稻孕穗期生理指标的影响. 灌溉排水学报, 2019, 38(3): 1-7 [30] Liu C, Hu ZH, Yu LF, et al. Responses of photosynthetic characteristics and growth in rice and winter wheat to different elevated CO2 concentrations. Photosynthetica, 2020, 58: 1130-1140 [31] 王鑫, 王莉, 赵锋, 等. 长期不同施肥方式对江南稻田系统生产力与抗逆性的影响. 生态与农村环境学报, 2011, 27(4): 62-68 [32] 曹娜, 陈小荣, 贺浩华, 等. 抽穗扬花期不同灌水处理对晚稻抵御低温、产量和生理特性的影响. 应用生态学报, 2017, 28(12): 3935-3944 [33] Gória MM, Ghini R, Bettiol W. Elevated atmospheric CO2 concentration increases rice blast severity. Tropical Plant Pathology, 2013, 38: 253-257 [34] Padhy SR, Nayak S, Dash PK, et al. Elevated carbon dioxide and temperature imparted intrinsic drought tolerance in aerobic rice system through enhanced exopolysaccharide production and rhizospheric activation. Agriculture, Ecosystems and Environment, 2018, 268: 52-60 [35] Zhu CW, Ziska LH, Sakai H, et al. Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars. European Journal of Agronomy, 2013, 46: 20-24 [36] Perdomo JA, Conesa MÀ, Medrano H, et al. Effects of long-term individual and combined water and temperature stress on the growth of rice, wheat and maize: Relationship with morphological and physiological acclimation. Physiologia Plantarum, 2015, 155: 149-165 [37] Plessl M, Heller W, Payer HD, et al. Growth parameters and resistance against Drechslera teres of spring barley (Hordeum vulgare L. cv. Scarlett) grown at elevated ozone and carbon dioxide concentrations. Plant Biology, 2005, 7: 694-705 |