欢迎访问《应用生态学报》官方网站,今天是 分享到:

应用生态学报 ›› 2018, Vol. 29 ›› Issue (2): 659-668.doi: 10.13287/j.1001-9332.201802.032

• 研究报告 • 上一篇    下一篇

黑腹果蝇white基因在H2O2影响下卷翅形成中的作用及机理

吴程丽, 林欣大*, 蒋艳云, 孟帅帅   

  1. 中国计量大学生命科学学院, 杭州 310018
  • 收稿日期:2017-06-22 出版日期:2018-02-18 发布日期:2018-02-18
  • 通讯作者: E-mail: linxinda@cjlu.edu.cn
  • 作者简介:吴程丽, 女, 1990年生, 硕士. 主要从事遗传学、生物化学与分子生物学研究. E-mail: 1129491641@qq.com
  • 基金资助:

    本文由国家自然科学基金项目(31071297)资助

The role of white gene and its mechanism during the formation of curly wing in Drosophila melanogaster.

WU Cheng-li, LIN Xin-da*, JIANG Yan-yun, MENG Shuai-shuai   

  1. College of Life Sciences, China Jiliang University, Hangzhou 310018, China
  • Received:2017-06-22 Online:2018-02-18 Published:2018-02-18
  • Contact: E-mail: linxinda@cjlu.edu.cn
  • Supported by:

    This work was supported by the National Natural Science Foundation of China (31071297).

摘要: 卷翅是果蝇遗传学上最常用的标记之一,但卷翅形成的具体机制还不清楚.过去的研究发现,理化刺激影响果蝇卷翅的形成.我们最近研究发现,H2O2处理不仅会影响果蝇的羽化率,还会使其出现卷翅现象.本研究通过改变H2O2浓度、果蝇培养温度和H2O2处理时间,探讨影响黑腹果蝇卷翅形成的具体因素,并对其超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-PX)活力进行检测,探讨H2O2对果蝇抗氧化能力的影响.结果表明: 果蝇的羽化率与H2O2浓度成反比.温度、H2O2浓度和H2O2处理时间的改变均会影响果蝇翅的卷曲程度和卷翅果蝇所占的比例.其中white基因突变果蝇对这3种条件反应最明显,mini-white(white基因回复突变)果蝇却可以拯救该表型,它的反应与野生型OR相似.H2O2对含Cy基因的果蝇卷翅的形成也有一定的影响,可以加大果蝇翅的卷曲程度.对SOD、CAT和GSH-PX活力检测发现,H2O2处理会使果蝇的抗氧化能力降低.实时荧光定量PCR检测发现,H2O2处理会导致果蝇基因表达量发生改变.黑腹果蝇卷翅形成是一个十分复杂的过程,H2O2可能作为某种信号分子或是间接影响某种因子参与黑腹果蝇的卷翅形成过程.该卷翅形成过程可能与Cy基因导致的果蝇卷翅过程是同一个信号途径,两者也可能是通过不同的模式进行调控的.

关键词: 氧化, 黑腹果蝇, H2O2, 卷翅, white基因

Abstract: Curly wing is one of the most frequently used genetic markers in Drosophila melanogaster, but its molecular mechanism is remained unclear. Previous results have showed that physicochemical stimulation would affect the formation of the cruly wing. Our recent study found that H2O2 could not only affect the eclosion rate of D. melanogaster, but also induce the formation of curly wing. Here, we aimed to uncover the specific factors influencing the formation of curly wing in D. melanogaster via changing the concentration of H2O2 and the temperature as well as the time of H2O2 treatment. We measured the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX), in order to examine the effects of H2O2 on antioxidative capacity of D. melanogaster. The results showed that the eclosion rate of D. melanogaster was inversely correlated with the concentration of H2O2. The change of temperature, H2O2 concentration and the period of H2O2 treatment affected the degree of the curl and the proportion of the curly wing. The white mutant flies responded most significantly to these three conditions, the mini-white (white gene reverse mutation) flies could rescue the curly phenotype, and responded similarly to the wild type OR. H2O2 had effects on the formation of the curly wing which contained the Cy mutation, leading to increased rate of the curly wing. D. melanogaster treated with H2O2 would reduce the antioxidative capacity. Results from real-time quantitative PCR showed that H2O2 treatment resulted in a change in gene expression. The formation of curly wing was a complicated process, and H2O2 might act as a signaling molecule or indirectly affect certain factors in the formation of curly wing in D. melano-gaster. This process might share the same signaling pathway with the Cy mutant, or might be regulated by different modulating patterns.

Key words: H2O2, Drosophila melanogaster, curly wing, white gene, oxidation.