[1] Ampoorter E, Barbaro L, Jactel H, et al. Tree diversity is key for promoting the diversity and abundance of forest-associated taxa in Europe. Oikos, 2020, 129: 133-146 [2] 国家林业和草原局. 中国森林资源概况—第九次全国森林资源清查报告[EB/OL]. (2019-05-16) [2022-02-08]. 2019 http://www.forestdata.cn/ [3] 夏丽丹, 张虹, 杨靖宇, 等. 杉木凋落物土壤生态功能研究进展. 世界林业研究, 2019, 32(2): 7-12 [4] 丁国昌, 万晓华, 杨起帆, 等. 亚热带树种转换对林地土壤微生物群落结构和功能的影响. 应用生态学报, 2017, 28(11): 3751-3758 [5] 杨静, 张耀艺, 谭思懿, 等. 亚热带不同树种土壤水源涵养功能. 生态学报, 2020, 40(13): 4594-4604 [6] Dukunde A, Schneider D, Schmidt M, et al. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Frontiers in Micro-biology, 2019, 10: 1519 [7] Hallin S, Jones CM, Schloter M, et al. Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment. The ISME Journal, 2009, 3: 597-605 [8] Liu YR, Eldridge DJ, Zeng XM, et al. Global diversity and ecological drivers of lichenised soil fungi. New Phytologist, 2021, 231: 1210-1219 [9] Shi X, Wang J, Lucas-Borja ME, et al. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. Journal of Applied Ecology, 2021, 58: 2833-2842 [10] Purkhold U, Pommerening-Röser A, Juretschko S, et al. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 2000, 66: 5368-5382 [11] Liu YR, Zheng YM, Shen JP, et al. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research, 2010, 17: 1237-1244 [12] Shi XZ, Hu HW, He JZ, et al. Effects of 3, 4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biology and Fertility of Soils, 2016, 52: 927-939 [13] Hassan MK, McInroy JA, Kloepper JW. The interactions of rhizodeposits with plant growth-promoting rhizobacteria in the rhizosphere: A review. Agriculture, 2019, 9: 142 [14] Bárta J, Tahovská K, antrůčková H, et al. Microbial communities with distinct denitrification potential in spruce and beech soils differing in nitrate leaching. Scientific Reports, 2017, 7: 1-15 [15] Malmivaara-Lámsá M, Fritze H. Effects of wear and above ground forest site type characteristics on the soil microbial community structure in an urban setting. Plant and Soil, 2003, 256: 187-203 [16] 路颖, 李坤, 倪瑞强, 等. 泰山4种优势造林树种细根分解对细菌群落结构的影响. 植物生态学报, 2018, 42(12): 1200-1210 [17] Fender AC, Gansert D, Jungkunst HF, et al. Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a tempe-rate deciduous forest soil. Soil Biology and Biochemistry, 2013, 57: 587-597 [18] Augusto L, Ranger J, Binkley D, et al. Impact of seve-ral common tree species of European temperate forests on soil fertility. Annals of Forest Science, 2002, 59: 233-253 [19] Hartman WH, Richardson CJ, Vilgalys R, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 17842-17847 [20] Andrianarisoa KS, Zeller B, Poly F, et al. Control of nitrification by tree species in a common-garden experiment. Ecosystems, 2010, 13: 1171-1187 [21] Florio A, Marechal M, Legout A, et al. Influence of biological nitrification inhibition by forest tree species on soil denitrifiers and N2O emissions. Soil Biology and Biochemistry, 2021, 155: 108164 [22] 王涛, 万晓华, 程蕾, 等. 杉木采伐迹地营造阔叶树种对土壤微生物生态化学计量特征的影响. 应用生态学报, 2020, 31(11): 3851-3858 [23] 王磊, 梁艺凡, 杨军钱, 等. 亚热带主要造林树种土壤氮保留及相关功能的微生物特征. 林业科学, 2020, 56(8): 27-37 [24] Tourna M, Freitag TE, Nicol GW, et al. Growth, acti-vity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology, 2008, 10: 1357-1364 [25] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63: 4704-4712 [26] Fowler SJ, Palomo A, Dechesne A, et al. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environmental Microbiology, 2018, 20: 1002-1015 [27] Wear EK, Wilbanks EG, Nelson CE, et al. Primer selection impacts specific population abundances but not community dynamics in a monthly time-series 16S rRNA gene amplicon analysis of coastal marine bacterioplankton. Environmental Microbiology, 2018, 20: 2709-2726 [28] 李敏, 郝伟. 大兴安岭4个树种根围土壤细菌群落结构. 生态学杂志, 2021, 40(7): 2057-2066 [29] Chen J, Shen W, Xu H, et al. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Frontiers in Micro-biology, 2019, 10: 508 [30] Yang H. Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees, 2018, 32: 383-391 [31] 丁新景, 敬如岩, 黄雅丽, 等. 基于高通量测序的4种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 2018, 54(1): 81-89 [32] 王改萍, 阿依古丽·托乎提, 王茹, 等. 新疆乌尔禾地区盐渍土壤耐盐细菌多样性与群落结构研究. 微生物学杂志, 2021, 41(2): 17-26 [33] Ribbons K, Lea R, Schofield PW, et al. Anxiety levels are independently associated with cognitive performance in an Australian multiple sclerosis patient cohort. Journal of Neuropsychiatry and Clinical Neurosciences, 2017, 29: 128-134 [34] 宋战超, 王晖, 刘世荣, 等. 南亚热带混交人工林树种丰富度与土壤微生物多样性和群落组成的关系. 生态学报, 2020, 40(22): 8265-8273 [35] 吴希慧, 王蕊, 高长青, 等. 土地利用驱动的土壤性状变化影响微生物群落结构和功能. 生态学报, 2021, 41(20): 7989-8002 [36] 覃鑫浩, 梁艳, 陈超凡, 等. 南亚热带不同树种人工林对土壤细菌群落多样性的影响. 林业科学研究, 2021, 34(4): 120-127 [37] Osburn ED, Barrett JE. Abundance and functional importance of complete ammonia-oxidizing bacteria (comammox) versus canonical nitrifiers in temperate forest soils. Soil Biology and Biochemistry, 2020, 145: 107801 [38] Shi X, Hu HW, Wang J, et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biology and Biochemistry, 2018, 126: 114-122 |