[1] 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响. 植物生理学报, 2017, 53(6): 933-942 [2] Xu ZP. Material nanotechnology is sustaining modern agriculture. ACS Agricultural Science & Technology, 2022, 2: 232-239 [3] Paramo LA, Feregrino-perez AA, Guevara R, et al. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials, 2020, 10: 1654 [4] Ranjan A, Rajput VD, Minkina T, et al. Nanoparticles induced stress and toxicity in plants. Environmental Nanotechnology, Monitoring & Management, 2021, 15: 100457 [5] 薛琳, 孙宇彤, 盛明悦, 等. 纳米材料对作物种子萌发及生长发育的影响. 中国农学通报, 2020, 36(21): 33-39 [6] Wang Y, Dimkpa C, Deng CY, et al. Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environmental Pollution, 2022, 297: 118738 [7] Jogaiah S, Paidi MK, Venugopal K, et al. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology. Science of the Total Environment, 2021, 801: 149809 [8] 倪洪涛, 张文彬, 丁广洲. 纳米材料对植物基因表达的影响及遗传毒性. 中国农学通报, 2019, 35(12): 143-149 [9] Deng CY, Wang Y, Navarro G, et al. Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Science of the Total Environment, 2022, 810: 152260 [10] Zhang CL, Jiang HS, Gu SP, et al. Combination analysis of the physiology and transcriptome provides insights into the mechanism of silver nanoparticles phytotoxicity. Environmental Pollution, 2019, 252: 1539-1549 [11] 夏雨琪, 彭程, 熊美昱, 等. 植物对金属纳米材料胁迫响应的蛋白质组学研究进展. 应用生态学报, 2020, 31(5): 1763-1772 [12] Sun LL, Wang YB, Wang RL, et al. Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano, 2020, 7: 3587-3604 [13] Zhang YN, Qi GY, Yao L, et al. Effects of metal nanoparticles and other preparative materials in the environment on plants: From the perspective of improving secondary metabolites. Journal of Agricultural and Food Chemistry, 2022, 70: 916-933 [14] Hossain Z, Yasmeen F, Komatsu S. Nanoparticles: Synthesis, morphophysiological effects, and proteomic responses of crop plants. International Journal of Molecular Sciences, 2020, 21: 3056 [15] Peng C, Xia YQ, Zhang W, et al. Proteomic analysis unravels response and antioxidation defense mechanism of rice plants to copper oxide nanoparticles: Comparison with bulk particles and dissolved Cu ions. ACS Agricultural Science & Technology, 2022, 2: 671-683 [16] Hao Y, Fang PH, Ma CX, et al. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environmental Research, 2019, 170: 30554052 [17] Jiang M, Wang JX, Rui MM, et al. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. Journal of Hazardous Materials, 2021, 403: 123946 [18] 廖兴盛, 王一翔, 陈佐泓, 等. 纳米二氧化钛(nTiO2)对三角褐指藻(Phaeodactylum tricornutum)光合系统的影响. 生态环境学报, 2020, 29(4): 778-785 [19] Dimkpa CO, Mclean JE, Latta DE, et al. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of Nanoparticle Research, 2012, 14: 1125 [20] 马占强, 许雁翀, 凡贞洁, 等. Cu2O纳米颗粒对小麦根系形态及遗传毒性的影响. 应用生态学报, 2021, 32(3): 1105-1111 [21] 于冰, 李海英, 张绍军, 等. 用TRIzol试剂一步法提取甜菜花蕾中的总RNA. 黑龙江大学自然科学学报, 2004(1): 138-140 [22] 张凯翔. 纳米银对浮游藻类和水生植物的作用机制. 硕士论文. 武汉: 中南民族大学, 2020 [23] Khan AR, Wakeel A, Muhammad N, et al. Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in Arabidopsis thaliana leaves. Environmental Science: Nano, 2019, 6: 341-355 [24] Lalau CM, Mohedano RA, Schmidt ÉC, et al. Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctata. Protoplasma, 2015, 252: 221-229 [25] Lu CM, Jiang GM, Wang BS, et al. Photosystem Ⅱ photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. Journal of Plant Physiology, 2003, 160: 403-408 [26] 卫丹丹, 王丙全, 刘美君, 等. 镉铝胁迫对藜麦种子萌发和光合特性的影响. 云南农业大学学报: 自然科学版, 2023, 38(4): 673-683 [27] Mathur S, Sunoj VSJ, Elsheery NI, et al. Regulation of photosystem Ⅱ heterogeneity and photochemistry in two cultivars of C4 crop sugarcane under chilling stress. Frontiers in Plant Science, 2021, 12: 627012 [28] Jiang CD, Jiang GM, Wang X, et al. Increased photosynthetic activities and thermostability of photosystem Ⅱ with leaf development of elm seedlings (Ulmus pumila) probed by the fast fluorescence rise OJIP. Environmental and Experimental Botany, 2006, 58: 261-268 [29] Dabrowski P, Baczewska AH, Pawluskiewicz B, et al. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSⅡ structure inhibited by salt stress in Perennial ryegrass. Journal of Photochemistry and Photobiology B: Biology, 2016, 157: 22-31 [30] Daems S, Ceusters N, Valcke R, et al. Effects of chilling on the photosynthetic performance of the CAM orchid Phalaenopsis. Frontiers in Plant Science, 2022, 13: 981581 [31] Ponters MS, Graclano DE, Antunes DR, et al. In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. Journal of Hazardous Materials, 2020, 396: 122484 [32] 车兴凯. 纳米氧化铜对藻类毒害的机理研究. 硕士论文. 泰安: 山东农业大学, 2020 [33] 王晓蕾, 张云鹤, 牟金猛, 等. 苏打盐碱胁迫对水稻光合特性及产量的影响. 作物杂志, 2024(1): 1-13 [34] Pandey N, Patel A, Tiwari S, et al. Differential response of copper nanoparticles and ionic copper on growth, chlorophyll fluorescence, oxidative stress, and antioxidant machinery of two paddy field cyanobacteria. Ecotoxicology, 2022, 31: 933-947 [35] Liu YL, Yue L, Wang CX, et al. Photosynthetic response mechanisms in typical C3 and C4 plants upon La2O3 nanoparticle exposure. Environmental Science: Nano, 2020, 7: 81-92 [36] Deng CN, Zhang DY, Pan XL, et al. Toxic effects of mercury on PSI and PSⅡ activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. Journal of Photochemistry & Photobiology B: Biology, 2013, 127: 23920143 [37] 牟鲯璃, 陈开俊, 李雨航, 等. 氧化锌纳米颗粒对生菜养分吸收及光合作用的影响. 浙江大学学报: 农业与生命科学版, 2023, 49(2): 229-240 [38] Mahalingam R, Duhan N, Kaundal R, et al. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. Frontiers in Plant Science, 2022, 13: 1066421 [39] Thomas G, Stärk HJ, Wellenreuther G, et al. Effects of nanomolar copper on water plants: Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions. Aquatic Toxicology, 2013, 140: 27-36 [40] Middepogui A, Hou J, Gao X, et al. Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2018, 161: 497-506 [41] Maiwald D, Dietzmann A, Jahns P, et al. Knock-out of the genes coding for the Rieske protein and the ATP-synthase δ-subunit of Arabidopsis: Effects on photosynthesis, thylakoid protein composition, and nuclear chloroplast gene expression. Plant Physiology, 2003, 133: 191-202 |