应用生态学报 ›› 2017, Vol. 28 ›› Issue (3): 1049-1060.doi: 10.13287/j.1001-9332.201703.002
• 综合评述 • 上一篇
韩骥*, 周燕
收稿日期:
2016-06-01
发布日期:
2017-03-18
通讯作者:
*E-mail: jhan@re.ecnu.edu.cn
作者简介:
韩骥,男,1979年生,博士研究生,副教授.主要从事城市生态、物质代谢及区域可持续发展研究.E-mail:jhan@re.ecnu.edu.cn
基金资助:
HAN Ji*, ZHOU Yan
Received:
2016-06-01
Published:
2017-03-18
Contact:
*E-mail: jhan@re.ecnu.edu.cn
Supported by:
摘要: 从物质代谢的视角研究物质在社会经济系统中的流通过程,不仅能深入理解人类活动与自然环境之间的关系,更有助于实现资源的合理利用和可持续发展.本文在对国内外有关物质代谢的研究方法、在不同空间尺度的应用、资源和环境效应的研究进展进行综述的基础上,较全面的对上述研究中已取得的成果以及尚待完善之处进行总结.物质代谢研究应从过去的单一理论和方法向多学科和方法交叉融合的方向发展,以解决复杂的代谢问题.随着城市在全球生态环境中的重要性日益凸显,应加强传统的代谢研究与地理空间分析的结合,并将人类福祉等评价指标纳入物质代谢的研究范畴,进而从物质代谢的视角提出节约资源、降低环境负荷、提高环境-经济-社会协调发展的可持续管理对策.
韩骥, 周燕. 物质代谢及其资源环境效应研究进展[J]. 应用生态学报, 2017, 28(3): 1049-1060.
HAN Ji, ZHOU Yan. Research progress in material metabolism and its effects on resource and environment[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 1049-1060.
[1] National Bureau of Statistics of the People’s Republic of China (国家统计局). China Statistical Yearbook 2013. Beijing: China Statistics Press, 2014 (in Chinese) [2] Moleshott J. The Circle of Life. Mainz: Mainz Press, 1852 [3] Newman PWG. Sustainability and cities: Extending the metabolism model. Landscape and Urban Planning, 1999, 44: 219-226 [4] Wolman A. The metabolism of cities. Scientific American, 1965, 213: 179-190 [5] Fischer-Kowalski M, Hüttler W. Society’s metabolism. Journal of Industrial Ecology, 1998, 2: 107-136 [6] Ayres RU, Kneese AV. Production consumption and externalities. American Economic Review, 1969, 59: 282-297 [7] Huang H-P (黄和平), Bi J (毕 军), Zhang B (张炳), et al. Critical review of material flow analysis (MFA). Acta Ecologica Sinica (生态学报), 2007, 27(1): 368-379 (in Chinese) [8] Wang Y (王 岩). Study on the method of material flow analysis calculation. Journal of Dongbei University of Finance and Economics (东北财经大学学报), 2014, 91(1): 9-14 (in Chinese) [9] Odum HT. Emergy in ecosystems// Poluin N, ed. Ecosystem Theory and Application. New York: John Wiley & Sons, 1986: 337-369 [10] Brown MT, Ulgiati S. Emergy-based Indices and Ratios to Evaluate Sustainability: Monitoring Economies and Technology toward Environmentally Sound Innovation. Ecological Engineering, 1997, 9: 51-69 [11] Lan S-F (蓝盛芳), Qin P (钦 佩), Lu H-F (陆宏芳). Emergy Analysis of Ecological-economic Systems. Beijing: Chemistry Industry Press, 2002: 30-32, 420-421 (in Chinese) [12] Cleveland CJ, Kaufmann RK, Stern DI. Aggregation and the role of energy in the economy. Ecological Economics, 2000, 32: 301-317 [13] Wei S-W (魏胜文), Chen X-J (陈先江), Zhang Y (张 岩), et al. Discussion to the emergy evaluation analysis method. Acta Prataculturae Sinica (草业学报), 2011, 20(2): 270-277 (in Chinese) [14] Xu Y-J (徐一剑), Zhang T-Z (张天柱). Regional material flow analysis model based on three-dimensional physical input-output table. Journal of Tsinghua University (清华大学学报), 2007, 47(3): 356-360 (in Chinese) [15] Zhang Y (张 颖), Shan Y-J (单永娟), Han X-M (韩雪梅). Design and analysis of an input-output table of material flow in economic system in Beijing. Journal of Natural Resources (自然资源学报), 2009, 24(3): 514-522 (in Chinese) [16] Liu H, Zhang Y. Ecological network analysis of urban metabolism based on input-output table. Procedia Environmental Sciences, 2012, 13: 1616-1623 [17] Deng N-S (邓南圣), Wu F (吴 峰). Industrial Ecology. Beijing: Chemical Industry Press, 2002: 49-50 (in Chinese) [18] Martínez-Rocamora A, Solís-Guzmán J, Marrero M. LCA databases focused on construction materials: A review. Renewable and Sustainable Energy Reviews, 2016, 58: 565-573 [19] Zheng X-J (郑秀君), Hu B (胡 彬). Domestic lite-rature review and the latest overseas research progress of life cycle assessment. Science & Technology Progress and Policy (科技进步与对策), 2013, 30 (6): 155-160 (in Chinese) [20] Yellishetty M, Mudd GM, Ranjith PG. The steel industry, abiotic resource depletion and life cycle assessment: A real or perceived issue? Journal of Cleaner Production, 2011, 19: 78-90 [21] Ouda OKM, Raza SA, Nizami AS, et al. Waste to energy potential: A case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 2016, 61: 328-340 [22] Hertwich EG, Gibon T, Bouman EA, et al. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 112: 6277-6282 [23] Parkes O, Lettieri P, Bogle IDL. Life cycle assessment of integrated waste management systems for alternative legacy scenarios of the London Olympic Park. Waste Management, 2015, 40: 157-166 [24] Rees WE. Ecological footprint and appropriated carring capacity: What urban economics leaves out. Environment and Urbanization, 1992, 4: 121-130 [25] Wachernagel M, Onisto L, Bello P, et al. Ecological Footprint of Nations. Toronto: International Council for Local Environmental Initiatives, 1997: 10-21 [26] Shang H-Y (尚海洋), Mao B-W (毛必文). Criticism on ecological footprint method. Resource Development & Market (资源开发与市场), 2015, 31(2): 160-165 (in Chinese) [27] Fu W, Turner JC, Zhao J, et al. Ecological footprint: An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Ecological Indicators, 2015, 48: 464-471 [28] Vitousek PM, Ehrlich PR, Ehrlich AH, et al. Human appropriation of the products of photo synthesis. BioScience, 1986, 36: 368-373 [29] Peng J (彭 建), Wang Y-L (王仰麟), Wu J-S (吴健生). Net primary productivity of the human footprint: A new method to measure regional sustainable development. Journal of Natural Resources (自然资源学报), 2007, 22(1): 153-158 (in Chinese) [30] Krausmann F, Erb KH, Gingrich S, et al. Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 10324-10329 [31] Long A-H (龙爱华), Wang H (王 浩), Cheng G-D (程国栋), et al. Human appropriation of net primary production in the middle reach of Heihe River basin. Chinese Journal of Applied Ecology (应用生态学报), 2008, 19(4): 853- 858 (in Chinese) [32] Takahashi KI, Terakado R, Nakamura J, et al. In-use stock analysis using satellite nighttime light observation data. Resources, Conservation and Recycling, 2010, 55: 196-200 [33] Graedel TE, Bertram M, Kapur A, et al. Exploratory data analysis of the multilevel anthropogenic copper cycle. Environmental Science & Technology, 2004, 38: 1253-1261 [34] Haas W, Krausmann F, Wiedenhofer D, et al. How Circular is the Global Economy? An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005. Journal of Industrial Ecology, 2015, 19: 765-777 [35] Nakamura S, Kondo Y. Input-output analysis of waste management. Journal of Industrial Ecology, 2002, 6: 39-63 [36] Ma D-C (马敦超), Hu S-Y (胡山鹰). Dynamic Substance Flow Analysis of Phosphorus Resource Metabolism in China and Its System Dynamic Model Research. PhD Thesis. Beijing: Tsinghua University, 2012 (in Chinese) [37] Höglmeier K, Weber-Blaschke G, Richter K. Potentials for cascading of recovered wood from building deconstruction: A case study for south-east Germany. Resources, Conservation and Recycling, 2013, 78: 81-91 [38] Han J, Xiang WN. Analysis of material stock accumulation in China’s infrastructure and its regional disparity. Sustainability Science, 2013, 8: 553-564 [39] Drakonakis K, Rostkowski K, Rauch J. Gordon Metal capital sustaining a North American city: Iron and copper in New Haven, CT. Resources, Conservation and Recycling, 2007, 49: 406-420 [40] Tanikawa H, Hashimoto S. Urban stock over time: Spatial material stock analysis using 4d-GIS. Building Research and Information, 2009, 37: 483-502 [41] Rosado R, Kalmykova Y, Patrício J. Urban metabolism profiles. An empirical analysis of the material flow cha-racteristics of three metropolitan areas in Sweden. Journal of Cleaner Production, 2016, 126: 206-217 [42] Huang C, Han J, Chen WQ. Changing patterns and determinants of infrastructures’ material stocks in Chinese cities. Resources, Conservation and Recycling, 2016, Doi:10.1016/j.resconrec.2016.06.014 [43] Li Y, Beeton RJS, Halog A, et al. Evaluating urban sustainability potential based on material flow analysis of inputs and outputs: A case study in Jinchang City, China. Resources, Conservation and Recycling, 2016, 110: 87-98 [44] Lu Y, Geng Y, Qian Y, et al. Changes of human time and land use pattern in one mega city’s urban metabolism: A multi-scale integrated analysis of Shanghai. Journal of Cleaner Production, 2016, 133: 391-401 [45] Xian C-F (冼超凡), Ouyang Z-Y (欧阳志云). Urban ecosystem nitrogen metabolism: Research progress. Chinese Journal of Ecology (生态学杂志), 2014, 33(9): 2548-2557 (in Chinese) [46] Zhang Y, Lu H, Fath BD, et al. Modelling urban nitrogen metabolic processes based on ecological network analysis: A case study in Beijing, China. Ecological Modelling, 2016, 337: 29-38 [47] Yang D, Kao WTM, Zhang G, et al. Evaluating spatiotemporal differences and sustainability of Xiamen urban metabolism using emergy synthesis. Ecological Modelling, 2014, 272: 40-48 [48] Liu J-R (刘晶茹), Wang R-S (王如松), Wang Z (王 震), et al. Metabolism and driving forces analysis of Chinese urban households.Acta Ecologica Sinica (生态学报), 2003, 23(12): 2672-2676 (in Chinese) [49] Wouter B, Klaas JN. Energy requirements of household consumption: A case study of The Netherlands. Ecological Economics, 1999, 28: 367-383 [50] Ma L, Zhao S, Shi L. Industrial metabolism of chlorine in a chemical industrial park: The Chinese case. Journal of Cleaner Production, 2016, 112: 4367-4376 [51] Zhang Y, Zheng H, Yang Z, et al. Analysis of the industrial metabolic processes for sulfur in the Lubei (Shandong Province, China) eco-industrial park. Journal of Cleaner Production, 2015, 96: 126-138 [52] Li M (李 敏), Zhang X-H (张小洪), Li Y-W (李远伟), et al. Environmental impacts of sewage treatment system based on emergy analysis. Chinese Journal of Applied Ecology (应用生态学报), 2013, 24(24): 488-496 (in Chinese) [53] Li J-R (李缙荣), Zhang X-H (张小洪), Zhang H-B (张航宾), et al. Assessing environmrntal and economical benefits of intergrated sewage treatent systems. Chinese Journal of Applied Ecology (应用生态学报), 2015, 26(8): 2482-2492 (in Chinese) [54] Mao D-H (毛德华), Hu G-W (胡光伟), Liu H-J (刘慧杰), et al. Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis. Chinese Journal of Applied Ecology (应用生态学报), 2014, 25(2): 525-532 (in Chinese) [55] Silva DAL, Oliveira JAD, Saavedra YMB, et al. Combined MFA and LCA approach to evaluate the metabolism of service polygons: A case study on a university campus. Resources, Conservation and Recycling, 2015, 94: 157-168 [56] Hu M, Pauliuk S, Wang T, et al. Iron and steel in Chinese residential buildings: A dynamic analysis. Resources, Conservation and Recycling, 2010, 54: 591-600 [57] Schebek L, Schnitzer B, Blesinger D, et al. Material stocks of the non-residential building sector: The case of the Rhine-Main area. Resources, Conservation and Recycling, 2016, Doi:10.1016/j.resconrec.2016.06.001 [58] Han F, Yu F, Cui Z, et al. Industrial metabolism of copper and sulfur in a copper-specific eco-industrial park in China. Journal of Cleaner Production, 2016, 133: 459-466 [59] Krausmann F, Haberl H. The process of industrialization from the perspective of energetic metabolism: Socioeconomic energy flows in Austria 1830-1995. Ecological Economics, 2002, 41: 177-201 [60] Bringezu S. Towards Sustainable Resource Management in the European Union. Wuppertal: Wuppertal Institute for Climate, Environment and Energy, 2002 [61] Neumann-Mahlkau P. Anthropogenic material flow: A geologic factor. Proceedings of the 30th International Geo-logical Congress, Beijing, 1999: 63-67 [62] Yang J-F (杨建锋). Material flow analysis from and to its geo-environment for the national economy in China.Journal of Natural Resources (自然资源学报), 2008, 23(4): 553-559 (in Chinese) [63] Martini B. The Anthropocene: Humankind as a Turning Point for Earth [EB/OL]. (2013-05-16) [2015-02-08]. http://www.astrobio.net/climate/the-anthropocene-humankind-as-a-turning-point-for-earth.html [64] Chen WQ, Graedel TE. In-use product stocks link ma-nufactured capital to natural capital. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 6265-6270 [65] Kennedy C, Steinberger J, Gasson B, et al. Greenhouse gas emissions from global cities. Environmental Science & Technology, 2009, 43: 7297-302 [66] Shi F, Hang T, Tanikawa H, et al. Toward a low carbon-dematerialization society: Measuring the materials demand and CO2 emissions of building and transport infrastructure construction in China. Journal of Industrial Ecology, 2012, 16: 493-505 [67] Muller DB, Liu G, Løvik AN, et al. Carbon emissions of infrastructure development. Environmental Science & Technology, 2013, 47: 11739-11746 [68] Hong L, Zhou N, Feng W, et al. Building stock dynami-cs and its impacts on materials and energy demand in China. Energy Policy, 2016, 94: 47-55 [69] You F, Hu D, Zhang H, et al. Carbon emissions in the life cycle of urban building system in China: A case study of residential buildings. Ecological Complexity, 2011, 8: 201-212 [70] Warren-Rhodes K, Koenig A. Escalating trends in the urban metabolism of Hong Kong: 1971-1997. Ambio, 2001, 30: 429-438 [71] Coelho A, Brito JD. Influence of construction and demolition waste management on the environmental impact of buildings. Waste Management, 2012, 32: 532-541 [72] Pincet S, Chester M, Circella G, et al. Enabling future sustainability transitions. Journal of Industrial Ecology, 2014, 18: 871-882 [73] Agudelo-Vera CM, Mels A, Keesman K, et al. The urban harvest approach as an aid for sustainable urban resource planning.Journal of Industrial Ecology, 2012, 16: 839-850 [74] Huang T, Shi F, Tanikawa H, et al. Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis. Resources, Conservation and Recycling, 2013, 72: 91-101 [75] Anderberg S. Industrial metabolism and the linkages between economics, ethics and the environment. Ecological Economics, 1998, 24: 311-320 [76] Li D (李 栋), Wang R-S (王如松), Zhou C-B (周传斌). LEAP based comprehensive scenario analysis of emergy evaluation on urban residential area. Journal of the Graduate School of the Chinese Academy of Sciences (中国科学院研究生院学报), 2009, 26(1): 72 -82 (in Chinese) [77] Li X-Q (李旋旗), Hua L-Z (花利忠). Landscape aesthetic assessment based on experiential paradigm assessment technology. Acta Ecologica Sinica (生态学报), 2012, 32(10): 2965-2974 (in Chinese) [78] Pandit A, Minné EA, Li F, et al. Infrastructure ecology: An evolving paradigm for sustainable urban development. Journal of Cleaner Production, 2015, Doi:10.1016/j.jclepro.2015.09.010 [79] Yang Q (杨 青), Lu C-P (逯承鹏), Zhou F (周 锋), et al. An emergy-ecological footprint model based evaluation of ecological security at the old industrial area in Northeast China: A case study of Liaoning Province. Chinese Journal of Applied Ecology (应用生态学报), 2016, 22(5): 1594-1602 (in Chinese) [80] Lee CL, Huang SL, Chan SL. Synthesis and spatial dy-namics of socio-economic metabolism and land use change of Taipei Metropolitan Region. Ecological Modelling, 2009, 220: 2940-2959 [81] Chen WQ, Graedel TE, Nuss P, et al. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy. Environmental Science & Technology, 2016, 50(7): 3905-3912 |
[1] | 张敏欢, 王建成, 杨红兰, 张道远, 邓鹏程, 崔志军. 新疆野核桃种质对低温胁迫的生理响应 [J]. 应用生态学报, 2020, 31(8): 2558-2566. |
[2] | 吴劲松. 植物对病原微生物的“化学防御”: 植保素的生物合成及其分子调控机制 [J]. 应用生态学报, 2020, 31(7): 2161-2167. |
[3] | 柳皓月, 金辉, 曾黎明, 杨晓燕, 辛爱一, 秦波. 杀线虫芽孢杆菌发酵条件优化及大孔树脂筛选 [J]. 应用生态学报, 2020, 31(7): 2287-2292. |
[4] | 张玉芳, 杨柳, 刘琰琰, 张秀琼, 陈超, 谢士娟, 冯文帅. 1961—2017年攀西烤烟生育期农业气候资源变化特征 [J]. 应用生态学报, 2020, 31(7): 2352-2362. |
[5] | 史丽娟, 王辉民, 付晓莉, 寇亮, 孟盛旺, 戴晓琴. 中亚热带典型人工林土壤酶活性及其化学计量特征 [J]. 应用生态学报, 2020, 31(6): 1980-1988. |
[6] | 阎晓, 田钰, 李荣杰. 资源型地区工业集聚对生态效率的影响——基于我国9个典型资源型省份的实证研究 [J]. 应用生态学报, 2020, 31(6): 2039-2048. |
[7] | 马文静, 刘娟. 基于能值分析的中国生态经济系统可持续发展评估 [J]. 应用生态学报, 2020, 31(6): 2029-2038. |
[8] | 石延英, 郭尔静, 张镇涛, 朱茜, 杨晓光. 东北三省水稻生长季农业气候资源及障碍型冷害的时空特征 [J]. 应用生态学报, 2020, 31(5): 1625-1635. |
[9] | 郭金强, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 氨基糖单体碳氮同位素的分析及其应用 [J]. 应用生态学报, 2020, 31(5): 1753-1762. |
[10] | 夏雨琪, 彭程, 熊美昱, 袁鹏. 植物对金属纳米材料胁迫响应的蛋白质组学研究进展 [J]. 应用生态学报, 2020, 31(5): 1763-1772. |
[11] | 赵方贵, 渠峰, 车永梅, 姚甲淋, 刘新. 丛枝菌根真菌对烟草香气相关物质代谢的影响 [J]. 应用生态学报, 2020, 31(4): 1298-1304. |
[12] | 王小军, 刘光旭, 相爱存, 肖彤. 江西省油茶综合生产潜力与资源利用效率评估 [J]. 应用生态学报, 2020, 31(4): 1175-1184. |
[13] | 闫雪, 孟德坤, 陈迪桃, 李倩, 杨涛, 李兰海. 基于生态系统服务的中亚水土热资源匹配度时空变化特征 [J]. 应用生态学报, 2020, 31(3): 794-806. |
[14] | 王蓉, 赵雪雁, 刘江华, 王晓琪, 兰海霞, 薛冰. 重点生态功能区农户生计对环境资源的依赖性——以甘南高原为例 [J]. 应用生态学报, 2020, 31(2): 554-562. |
[15] | 苏彦瑜, 李燕, 董旭辉. 湖北梁子湖流域社会生态系统可持续发展的“安全公正空间” [J]. 应用生态学报, 2020, 31(12): 4206-4214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||