[1] 王海宁, 葛顺峰, 姜远茂, 等. 施氮水平对五种苹果砧木生长以及氮素吸收、分配和利用特性的影响. 植物营养与肥料学报, 2012, 18(5): 1262-1268 [2] 鲁剑巍, 陈防, 王运华, 等. 氮磷钾肥对红壤地区幼龄柑橘生长发育和果实产量及品质的影响. 植物营养与肥料学报, 2004, 10(4): 413-418 [3] Zhao DL, Reddy KR, Kakani VG, et al. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy, 2004, 22: 391-403 [4] Shu JH, Wu JH, Qin TY, et al. Research on physiological characteristics of tall fescue under nitrogen stress. Agricultural Science and Technology, 2015, 16: 1837-1839, 1844 [5] 王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展. 分子植物育种, 2019, 17(4): 1373-1377 [6] 解斌, 安秀红, 陈艳辉, 等. 苹果砧木对低氮胁迫的响应及适应性评价. 植物营养与肥料学报, 2022, 28(6): 1092-1103 [7] Krouk G, Lacombe B, Bielach A, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell, 2010, 18: 927-937 [8] Koltai H. Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Annals of Botany, 2013, 112: 409-415 [9] Min Z, Li R, Chen L, et al. Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiology and Biochemistry, 2019, 135: 99-110 [10] Hu Q, Zhang S, Huang B. Strigolactones and interaction with auxin regulating root elongation in tall fescue under different temperature regimes. Plant Science, 2018, 271: 34-39 [11] Zheng XD, Li YQ, Xi X, et al. Exogenous Strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiology and Biochemistry, 2021, 159: 113-122 [12] Shinsaku I, Ken I, Naoko A, et al. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition. Plant Signaling and Behavior, 2016, 11: e1126031 [13] 孙虎威. 独脚金内酯参与氮、磷调控水稻根系生长发育的机制研究. 博士论文. 南京: 南京农业大学, 2015 [14] Wan HX, Yang FY, Zhuang XL, et al. Malus rootstocks affect copper accumulation and tolerance in trees by regulating copper mobility, physiological responses, and gene expression patterns. Environmental Pollution, 2021, 287: 117610 [15] Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 1994, 144: 307-313 [16] Li LJ, Lu XC, Ma HY, et al. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malus baccata. Journal of Plant Research, 2018, 131: 865-878 [17] Sousa DPF, Braga BB, Gondim FA, et al. Increased drought tolerance in maize plants induced by H2O2 is closely related to an enhanced enzymatic antioxidant system and higher soluble protein and organic solutes contents. Theoretical and Experimental Plant Physiology, 2016, 28: 297-306 [18] 赵明德, 刘晶, 吉云, 等. 不同温度条件下高原多年生牧草幼苗的生理和生长对碱胁迫的响应. 西南农业学报, 2020, 33(12): 2807-2813 [19] Ali N, Hadi F. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent. Environmental Science and Pollution Research, 2015, 22: 13305-13318 [20] 郎冬梅, 秦嗣军, 朱紫檀, 等. 外源葡萄糖对山定子生长及根系氮素代谢的影响. 应用生态学报, 2018, 29(3): 797-804 [21] Garnett T, Conn V, Kaiser BN. Root based approaches to improving nitrogen use efficiency in plants. Plant, Cell and Environment, 2009, 32: 1272-1283 [22] 王宁, 师赵康, 徐世英, 等. 低氮诱导玉米幼苗叶片衰老过程中碳氮平衡的动态变化. 应用生态学报, 2022, 33(4): 1045-1054 [23] 范敏, 金黎平, 黄三文, 等. 干旱胁迫对马铃薯类黄酮和类胡萝卜素合成关键酶基因表达的影响. 园艺学报, 2008, 35(4): 535-542 [24] 费小红, 安保光, 赵宝华, 等. 类胡萝卜素参与水稻抗氧化胁迫的研究进展. 现代农业科学, 2009, 16(1): 22-23 [25] 季浩. 不同生育期及高温对玉米和棉花叶片叶绿素荧光参数的影响研究. 博士论文. 南京: 南京农业大学, 2017 [26] 李国栋, 田曼青, 沈仁芳. 拟南芥独脚金内酯突变体叶绿素荧光特性分析. 浙江农林大学学报, 2017, 34(1): 36-41 [27] Yamada Y, Furusawa S, Nagasaka S, et al. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 2014, 240: 399-408 [28] 魏如月, 张慧兰, 阚文杰, 等. 外源独脚金内酯缓解小麦干旱胁迫的机制研究. 安徽大学学报: 自然科学版, 2021, 45(5): 98-108 [29] Tai Z, Yin X, Fang Z, et al. Exogenous GR24 alleviates cadmium toxicity by reducing cadmium uptake in switchgrass (Panicum virgatum) seedlings. International Journal of Environmental Research and Public Health, 2017, 14: 852 [30] 李润宇, 闵卓, 房玉林. 独脚金内酯对干旱胁迫‘赤霞珠’葡萄幼苗生长的影响. 西北农林科技大学学报: 自然科学版, 2019, 47(5): 67-77 [31] 王峰. 青稞对低氮胁迫的生理响应及交替呼吸途径影响低氮耐受性的机理研究. 博士论文. 兰州: 兰州大学, 2016 [32] 王业建. 大豆对低氮胁迫的形态和生理学响应及介导低氮胁迫miRNA的鉴定. 博士论文. 长沙: 中南大学, 2013 [33] 李强, 罗延宏, 龙文靖, 等. 低氮胁迫对不同耐低氮性玉米品种苗期生长和生理特性的影响. 草业学报, 2014, 23(4): 204-212 [34] Lu T, Yu HJ, Li Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Frontiers in Plant Science, 2019, 10: 490 [35] Sharifi P, Bidabad SS. Strigolactone could enhances gas-exchange through augmented antioxidant defense system in Salvia nemorosa L. plants subjected to saline conditions stress. Industrial Crops and Products, 2020, 151: 112460 [36] 唐超男. 外源独脚金内酯调控辣椒幼苗低温耐受性的生理与分子机制. 博士论文. 兰州: 甘肃农业大学, 2021 [37] 万林, 李张开, 李素, 等. 外源独脚金内酯对油菜苗期干旱胁迫的缓解效应. 中国油料作物学报, 2020, 42(3): 461-471 [38] 邓若磊, 徐海荣, 曹云飞, 等. 植物吸收铵态氮的分子生物学基础. 植物营养与肥料学报, 2007, 13(3): 512-519 [39] 秦永梅, 伊六喜, 赵小庆, 等. 硝酸盐胁迫对玉米幼苗氮同化相关酶的影响. 华北农学报, 2015, 30(4): 105-109 [40] Erenoglu EB, Kutman UB, Ceylan Y, et al. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc (65 Zn) in wheat. New Phytologist, 2011, 189: 438-448 |