[1] |
Holling CS. Resilience and stability of ecological systems. Annual Review of Ecology & Systematics, 1973, 4: 1-23
|
[2] |
Immerzeel WW, Lutz AF, Andrade M, et al. Importance and vulnerability of the world's water towers. Nature, 2020, 577: 364-369
|
[3] |
Holling CS. Understanding the complexity of economic, ecological, and social systems. Ecosystems, 2001, 4: 390-405
|
[4] |
Scheffer M, Bascompte J, Brock WA, et al. Early-warning signals for critical transitions. Nature, 2009, 461: 53-59
|
[5] |
于贵瑞, 张雪梅, 赵东升, 等. 区域资源环境承载力科学概念及其生态学基础的讨论. 应用生态学报, 2022, 33(3), DOI: 10.13287/j.1001-9332.202203.020
|
[6] |
竺可桢. 论我国气候的几个特点及其与粮食作物生产的关系. 地理学报, 1964, 30(1): 1-13
|
[7] |
黄秉维. 中国农业生产潜力——光合潜力. 地理集刊, 1985(17): 15-22
|
[8] |
石玉林. 充分利用土地资源提高土地生产能力. 自然资源, 1985, 7(1): 8-16
|
[9] |
李忠武, 叶芳毅, 李裕元, 等. 基于逐级递减法的洞庭湖区晚稻生产潜力模拟与预测. 地理研究, 2010, 29(11): 2017-2025
|
[10] |
党安荣, 阎守邕, 吴宏歧, 等. 基于GIS的中国土地生产潜力研究. 生态学报, 2000, 20(6): 910-915
|
[11] |
封志明, 杨艳昭, 张晶, 等. 从栅格到县域:中国粮食生产的资源潜力区域差异分析. 自然资源学报, 2007, 22(5): 747-755
|
[12] |
Rees WE. Revisiting carrying capacity: Area-based indicators of sustainability. Population & Environment, 1996, 17: 195-215
|
[13] |
符国基, 徐恒力, 陈文婷. 海南省自然生态承载力研究. 自然资源学报, 2008, 23(3): 412-421
|
[14] |
Haberl H, Krausmann F, Erb KH, et al. Human appropriation of net primary production. Science, 2002, 296: 1968-1969
|
[15] |
O'Neill DW, Tyedmers PH, Beazley KF. Human appropriation of net primary production (HANPP) in Nova Scotia, Canada. Regional Environmental Change, 2006, 7: 1-14
|
[16] |
龙爱华, 王浩, 程国栋, 等. 黑河流域中游地区净初级生产力的人类占用. 应用生态学报, 2008, 19(4): 853-858
|
[17] |
Huang X, Luo G, Han Q. Temporospatial patterns of human appropriation of net primary production in Central Asia grasslands. Ecological Indicators, 2018, 91: 555-561
|
[18] |
赵东升, 张雪梅. 生态系统多稳态的研究进展. 生态学报, 2021, 41(16): 1-15
|
[19] |
杨光华, 姜燕, 张玉成, 等. 确定地基承载力的新方法. 岩土工程学报, 2014, 36(4): 597-603
|
[20] |
王立辉, 溃坝水流数值模拟与溃坝风险分析研究. 博士论文. 南京: 南京水利科学研究院, 2006
|
[21] |
张继权, 梁警丹, 周道玮. 基于GIS技术的吉林省生态灾害风险评价. 应用生态学报, 2007, 18(8): 1765-1770
|
[22] |
牛文元, 曹明奎. 生态灾害及其对我国的影响. 地球科学进展, 1990, 5(4): 54-58
|
[23] |
刘全友, 陆中臣. 晋冀鲁豫接壤区生态灾害及灾情评估研究. 生态学报, 1999, 19(1): 23-29
|
[24] |
Odum EP, Barrett GW. 陆健健, 王伟, 王天慧, 等, 译. 生态学基础(第五版). 北京: 高等教育出版社, 2009
|
[25] |
李小双, 彭明春, 党承林. 植物自然更新研究进展. 生态学杂志, 2007, 26(12): 2081-2088
|
[26] |
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity. Nature, 2009, 461: 472-475
|
[27] |
Rockström J, Steffen W, Noone K, et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 2009, 14: 292-292
|
[28] |
陈先鹏, 方恺, 彭建, 等. 资源环境承载力评估新视角:行星边界框架的源起、发展与展望. 自然资源学报, 2020, 35(3): 513-531
|
[29] |
吴玉萍, 董锁成, 宋键峰. 北京市经济增长与环境污染水平计量模型研究. 地理研究, 2002, 21(2): 239-246
|
[30] |
郁珍艳, 李正泉, 高大伟, 等. 浙江省空气质量与大气自净能力的特征分析. 气象, 2017, 43(3): 323-332
|
[31] |
唐颖潇, 韩素芹, 蔡子颖, 等. 2013—2017年天津市大气自净能力与大气颗粒物质量浓度特征分析. 气象与环境学报, 2019, 35(6): 55-66
|
[32] |
葛滢, 王晓月, 常杰. 不同程度富营养化水中植物净化能力比较研究. 环境科学学报, 1999, 19(6): 690-692
|
[33] |
靳亚亚, 李陈, 靳相木. 土地承载力两大法则及其适用性. 水土保持通报, 2019, 39(4): 158-165
|
[34] |
董楠楠, 王有乐. 基于模糊综合评价法和层次分析法的张掖市黑河湿地水质评价. 湖北农业科学, 2016, 55(21): 5535-5539
|
[35] |
霍正文, 孙超. 灰关联综合分析法在石羊河流域生态健康评价中的应用. 地下水, 2017, 39(5): 99-101
|
[36] |
夏军, 王中根, 左其亭. 生态环境承载力的一种量化方法研究——以海河流域为例. 自然资源学报, 2004, 19(6): 786-794
|
[37] |
赵东升, 郭彩贇, 郑度, 等. 生态承载力研究进展. 生态学报, 2019, 39(2): 399-410
|
[38] |
徐延达, 傅伯杰, 吕一河. 基于模型的景观格局与生态过程研究. 生态学报, 2010, 30(1): 212-220
|
[39] |
Lein JK. Mapping environmental carrying capacity using an artificial neural network: A first experiment. Land Degradation & Development, 2010, 6: 17-28
|
[40] |
郭轲, 王立群. 京津冀地区资源环境承载力动态变化及其驱动因子. 应用生态学报, 2015, 26(12): 3818-3826
|
[41] |
Ma JY, Shugart HH, Yan XD, et al. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN. Science of the Total Environment, 2017, 586: 939-951
|
[42] |
Woodward I, Smith T, Emanuel W. A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 1995, 9: 471-490
|
[43] |
Kirschbaum M, Paul KI. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biology & Biochemistry, 2002, 34: 341-354
|
[44] |
Xu RT, Tian HQ, Pan SF, et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and process-based estimates and uncertainty. Global Change Biology, 2019, 25: 314-326
|
[45] |
Churkina G, Tenhunen J, Thornton P, et al. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model. Ecosystems, 2003, 6: 168-184
|
[46] |
Van D, Randerson JT, Giglio L, et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry & Physics, 2006, 6: 3423-3441
|
[47] |
Melillo JM, Mcguire AD, Kicklighter DW, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363: 234-240
|
[48] |
Sitch S, Smith B, Prentice I. Plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 2010, 9: 161-185
|
[49] |
Gu FX, Zhang YD, Huang M, et al. Nitrogen deposition and its effect on carbon storage in Chinese forests during 1981-2010. Atmospheric Environment, 2015, 123: 171-179
|
[50] |
Huang Y, Yu Y, Zhang W, et al. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural and Forest Meteorology, 2009, 149: 106-129
|
[51] |
Wu SH, Yin YH, Zhao DS, et al. Impact of future climate change on terrestrial ecosystems in China. International Journal of Climatology, 2010, 30: 866-873
|
[52] |
Feng X, Liu G, Chen JM, et al. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 2007, 85: 563-573
|
[53] |
Wang L, Koike T, Yang DW, et al. Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model. Journal of Sciences Hydrologiques, 2009, 54: 989-1006
|
[54] |
Ichii K, Hashimoto H, Nemani R, et al. Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global and Planetary Change, 2005, 48: 274-286
|
[55] |
O'Neill MMF, Tijerina DT, Condon LE, et al. Assessment of the ParFlow-CLM CONUS 1.0 integrated hydrologic model: Evaluation of hyper-resolution water balance components across the contiguous United States. Geoscientific Model Development, 2021, 14: 7223-7254
|