[1] Chen HY, Teng YG, Lu SJ, et al. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 2015, 512-513: 143-153 [2] Niu LL, Yang FX, Xu C, et al. Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environmental Pollution, 2013, 176: 55-62 [3] 环境保护部. 环境保护部和国土资源部发布全国土壤污染状况调查公报[EB/OL]. (2014-04-17) [2017-02-15]. http://www. zhb.gov.cn/gkmL/hbb/qt/201404/t20140417_270670.Htm. [Ministry of Environmental Protection. A Communiqué of National Soil Pollution Investigation Reported by Ministry of Environmental Protection and Land and Resources [EB/OL]. (2014-04-17) [2017-02-15]. http://www. zhb.gov.cn/gkmL/hbb/qt/201404/t20140417_270670.Htm] [4] Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 2011, 180: 169-181 [5] 吴龙华, 李娜, 毕德, 等. 锌镉复合污染土壤的植物修复方法. 中国, 200710020380.5. 2007-08-15 [Wu L-H, Li N, Bi D, et al. Phytoremediation method for zinc-cadmium complex contaminated soil. China, 200710020380.5. 2007-08-15] [6] Wu LH, Liu YJ, Zhou SB, et al. Sedum plumbizincicola: A new species from Zhejiang Province, China. Plant Systematics and Evolution, 2013, 299: 487-489 [7] Fan YQ, Li Z, Zhou T, et al. Phytoextraction potential of soils highly polluted with cadmium using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. International Journal of Phytoremediation, 2019, 21: 733-741 [8] Zhou T, Wu LH, Christie P, et al. The efficiency of Cd phytoextraction by S. plumbizincicola, increased with the addition of rice straw to polluted soils: The role of particulate organic matter. Plant and Soil, 2018, 429: 321-333 [9] Wu SC, Cheung KC, Luo YM, et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 2006, 140: 124-135 [10] 库永丽, 徐国益, 赵骅, 等. 微生物肥料对猕猴桃高龄果园土壤改良和果实品质的影响. 应用生态学报,2018, 29(8): 2532-2540 [Ku Y-L, Xu G-Y, Zhao H, et al. Effects of microbial fertilizer on soil improvement and fruit quality of kiwifruit in old orchard. Chinese Journal of Applied Ecology, 2018, 29(8): 2532-2540] [11] 娄义, 郭俏, 彭楚, 等. 3株芽孢杆菌对番茄的促生作用及对番茄根域微生物的影响. 应用生态学报, 2018, 29(1): 260-268 [Lou Y, Guo Q, Peng C, et al. Effects of three Bacillus strains on growth promoting and rhizosphere soil microflora of tomato. Chinese Journal of Applied Ecology, 2018, 29(1): 260-268] [12] 马莹, 骆永明, 滕应, 等. 根际促生菌及其在污染土壤植物修复中的应用. 土壤学报, 2013, 50(5): 1021-1031 [Ma Y, Luo Y-M, Teng Y, et al. Plant growth promoting rhizobacteria and their role in phytoremediation of heavy metal contaminated soils. Acta Pedo-logica Sinica, 2013, 50(5): 1021-1031] [13] Liu H, Yuan M, Tan S, et al. Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Applied Soil Ecology, 2015, 89: 44-49 [14] 王小敏, 纪宏伟, 刘文菊, 等. 巨大芽孢杆菌与印度芥菜对Cd污染土壤的联合修复效果研究. 水土保持学报, 2014, 28(4): 232-236 [Wang X-M, Ji H-W, Liu W-J, et al. Effect of Bacillus megaterium and Brassica juncea combination on phytoextraction of Cd from polluted soil. Journal of Soil and Water Conservation, 2014, 28(4): 232-236] [15] 纪宏伟, 王小敏, 庞宏伟, 等. 枯草芽孢杆菌与巨大芽孢杆菌对土壤有效态Cd的影响研究. 水土保持学报, 2015, 29(3): 325-329 [Ji H-W, Wang X-M, Pang H-W, et al. Effect of Bacillus subtilis and Bacillus megaterium on soil available Cd. Journal of Soil and Water Conservation, 2015, 29(3): 325-329] [16] 赵树民, 李晓东, 虞方伯, 等.巨大芽孢杆菌LY02对黑麦草修复重金属污染土壤的影响. 水土保持学报, 2017, 31(5): 340-344 [Zhao S-M, Li X-D, Yu F-B, et al. Effect of Bacillus megaterium LY02 on phytoremediation of heavy metal from contaminated soil by Lolium perenne L. Journal of Soil and Water Conservation, 2017, 31(5): 340-344] [17] 鲁如坤. 土壤农业化学分析. 北京: 中国农业科技出版社, 1999 [Lu R-K. Soil and Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press, 1999] [18] 曹雪莹, 谭长银, 谢雨呈, 等. 土壤pH和Cd全量对伴矿景天修复效率的影响. 环境科学研究, 2019, 32(9): 1604-1612 [Cao X-Y, Tan C-Y, Xie Y-C, et al. Effect of soil pH and total cadmium concentration of soil on the remediation efficiency of Sedum plumbizincicola. Research of Environmental Sciences, 32(9): 1604-1612] [19] Li Z, Jia MY, Wu LH, et al. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola. Environmental Pollution, 2016, 209: 123-131 [20] Wu LH, Zhou JW, Zhou T, et al. Estimating cadmium availability to the hyperaccumulator Sedum plumbizincicola in a wide range of soil types using a piecewise function. Science of the Total Environment, 2018, 637-638: 1342-1350 [21] 曾希柏, 徐建明, 黄巧云, 等. 中国农田重金属问题的若干思考. 土壤学报, 2013, 50(1): 186-194 [Zeng X-B, Xu J-M, Huang Q-Y, et al. Some delibera-tion on the issues of heavy metals in farmlands of China. Acta Pedologica Sinica, 2013, 50(1): 186-194] [22] 周慧芳, 王京文, 孙吉林, 等. 耐镉菌联合植物吸收对土壤重金属镉污染的修复. 浙江大学学报: 农业与生命科学版, 2017, 42(3): 341-349 [Zhou H-F, Wang J-W, Sun J-L, et al. Remediation of cadmium-tolerant bacteria combined with plant absorption on soil heavy metal cadmium pollution. Journal of Zhejiang University: Agricultural & Life Sciences, 2017, 42(3): 341-349] [23] 马莹, 骆永明, 滕应, 等. 内生细菌强化重金属污染土壤植物修复研究进展. 土壤学报, 2013, 50(1): 195-202 [Ma Y, Luo Y-M, Teng Y, et al. Effects of endophytic bacteria enhancing phytoremediation of heavy metal contaminated soils. Acta Pedologica Sinica, 2013, 50(1): 195-202] [24] Seulki J, Hee SM, Kyoungphile N, et al. Application of phosphate-solubilizing bacteria for enhancing bioavaila-bility and phytoextraction of cadmium (Cd) from polluted soil. Chemosphere, 2012, 88: 204-210 [25] Li TQ, Di ZZ, Yang XA, et al. Effects of dissolved organic matter from the rhizosphere of the hyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soil. Journal of Hazardous Materials, 2011, 192: 1616-1622 [26] 王小敏, 刘文菊, 李博文, 等. 巨大芽孢杆菌与胶冻样类芽孢杆菌对土壤镉的活化效果研究. 水土保持学报, 2013, 27(6): 83-88 [Wang X-M, Li W-J, Li B-W, et al. Effect of Bacillus megaterium and Paenibacillus kribbensis on availability of soil Cd. Journal of Soil and Water Conservation, 2013, 27(6): 83-88] [27] Li Z, Wu LH, Hu PJ, et al. Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environmental Pollution, 2014, 189: 176-183 [28] 李娜, 吴龙华, 骆永明, 等. 收获方式对污染土壤上伴矿景天锌镉吸收性的影响. 土壤学报, 2009, 46(4): 725-728 [Li N, Wu L-H, Luo Y-M, et al. Effects of harvesting way of Sedum plumbizincicola on its zinc and cadmium uptake in a mixed heavy metal contaminated soil. Acta Pedologica Sinica, 2009, 46(4): 725-728] [29] Liu WX, Wang QL, Wang BB, et al. Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil. Journal of Soils and Sediments, 2015, 15: 1191-1199 [30] Deng L, Li Z, Wang J, et al. Long-term field phytoextraction of zinc/cadmium contaminated soil by Sedum plumbizincicola under different agronomic strategies. International Journal of Phytoremediation, 2016, 18: 134-140 [31] 潘风山. 东南景天促生菌提高植物萃取镉效率极其机理研究. 博士论文. 杭州: 浙江大学, 2016 [Pan F-S. Mechanisms of Plant Growth Promoting Bacteria of Sedum alfredii Hance on Enhancing Cd Phytoextraction. PhD Thesis. Hangzhou: Zhejiang University, 2016] [32] 李继光, 李廷强, 朱恩, 等. 氮对超积累植物东南景天生长和镉积累的影响. 水土保持学报, 2007, 21(1): 55-58 [Li J-G, Li T-Q, Zhu E, et al. Effects of nitrogen fertilizer on growth and cadmium accumulation in hyperaccumulator of Sedum alfredii Hance. Journal of Soil and Water Conservation, 2007, 21(1): 55-58] [33] 马文婷, 滕应, 凌婉婷, 等. 里氏木霉FS10-C对伴矿景天吸取修复镉污染土壤的强化作用. 土壤, 2012, 44(6): 991-995 [Ma W-T, Teng Y, Ling W-T, et al. Enhancing remediation of Sedum plumbizincicola in cadmium contaminated soils by Trichoderma reesei FS10-C. Soils, 2012, 44(6): 991-995] |