应用生态学报 ›› 2021, Vol. 32 ›› Issue (7): 2623-2632.doi: 10.13287/j.1001-9332.202107.039
杨富玲1, 石杨1, 李斌1, 杜志烨1, 汪梦婷1, 廖恒毅1, 陈稷2, 黄进1*
收稿日期:
2020-11-15
修回日期:
2021-04-05
出版日期:
2021-07-15
发布日期:
2022-01-15
通讯作者:
*huangjin18@cdut.edu.cn
作者简介:
杨富玲,女,1998年生,硕士研究生.主要从事环境微生物、分子生物学研究.E-mail:1229438849@qq.com
基金资助:
YANG Fu-ling1, SHI Yang1, LI Bin1, DU Zhi-ye1, WANG Meng-ting1, LIAO Heng-yi1, CHEN Ji2, HUANG Jin1*
Received:
2020-11-15
Revised:
2021-04-05
Online:
2021-07-15
Published:
2022-01-15
Contact:
*huangjin18@cdut.edu.cn
Supported by:
摘要: 近年来重金属污染等生态环境问题日益受到重视,而物理、化学修复方法存在的诸如成本高、二次污染等问题,使得利用植物、微生物等进行联合治理成为环境修复的重要手段。植物根系分泌物作为植物与土壤进行营养和信息交流的重要媒介,不但对植物的生长具有重要作用,其在污染及沙化土壤修复中作用的研究也得以广泛开展。本文对根系分泌物的组成、分泌机制进行了阐述,并对其在植物吸收重金属、化感作用、植物根系与根际微生物互作、改变土壤理化性质等过程中的作用及机理进行了总结。此外,本文还对利用根系分泌物和根际微生物在生态环境治理中的应用现状、面临的难题及未来的发展等进行了讨论。希望本文可为基于植物与微生物进行的环境修复技术的实际应用提供理论支撑。
杨富玲, 石杨, 李斌, 杜志烨, 汪梦婷, 廖恒毅, 陈稷, 黄进. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景[J]. 应用生态学报, 2021, 32(7): 2623-2632.
YANG Fu-ling, SHI Yang, LI Bin, DU Zhi-ye, WANG Meng-ting, LIAO Heng-yi, CHEN Ji, HUANG Jin. Status and prospects of the application of root exudates in the restoration of polluted or desertated soil[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2623-2632.
[1] Oburger E, Jones D. Sampling root exudates: Mission impossible? Rhizosphere, 2018, 6: 116-133 [2] Bowsher AW, Ali R, Harding SA, et al. Evolutionary divergences in root exudate composition among ecologically-contrasting Helianthus species. PLoS One, 2016, 11(1): e0148280, doi: 10.1371/journal.pone.0148280 [3] 郭婉玑, 张子良, 刘庆, 等. 根系分泌物收集技术研究进展. 应用生态学报, 2019, 30(11): 3951-3962[Guo W-J, Zhang Z-L, Liu Q, et al. Research progress of root exudates collection technology. Chinese Journal of Applied Ecology, 2019, 30(11): 3951-3962] [4] Yin P, Jia A, Heimann K, et al. Hot water pretreatment-induced significant metabolite changes in the sea cucumber Apostichopus japonicus. Food Chemistry, 2020, 314: 126211, doi: 10.1016/j.foodchem.2020.126211 [5] Liu W, Zhao Q, Zhang Z, et al. Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes. Science of the Total Environment, 2020, 716: 137121, doi: 10.1016/j.scitotenv.2020.137121 [6] Preece C, Peñuelas J. A return to the wild: Root exudates and food security. Trends in Plant Science, 2020, 25: 14-21 [7] Shen X, Yang F, Xiao C, et al. Increased contribution of root exudates to soil carbon input during grassland degradation. Soil Biology and Biochemistry, 2020, 146: 107817, doi: 10.1016/j.soilbio.2020.107817 [8] De Vries FT, Williams A, Stringer F, et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist, 2019, 224: 132-145 [9] Shastri B, Kumar R. Chapter 6: Microbial secondary metabolites and plant-microbe communications in the rhizosphere//Singh JS, ed. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, the Netherlands: Elsevier, 2019: 93-111 [10] Zhu Y, Yang J, Wang L, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants. Science of the Total Environment, 2020, 738: 140232, doi: 10.1016/j.scitotenv.2020.140232 [11] Rebolledo-Prudencio OG, Dautt-Castro M, Estrada-Rivera M, et al. Chapter 1: Trichoderma in the rhizosphere: An approach toward a long and successful symbiosis with plants//Gupta VK, Zeilinger S, Singh HB, eds. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, the Netherlands: Elsevier, 2020: 3-38 [12] Sarma H, Sonowal S, Prasad MNV. Plant-microbiome assisted and biochar-amended remediation of heavy metals and polyaromatic compounds: A microcosmic study. Ecotoxicology and Environmental Safety, 2019, 176: 288-299 [13] Adeleke R, Nwangburuka C, Oboirien B. Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 2017, 108: 393-406 [14] Sasse J, Martinoia E, Northen T. Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 2018, 23: 25-41 [15] Badri DV, Vivanco JM. Regulation and function of root exudates. Plant, Cell & Environment, 2009, 32: 666-681 [16] 李娇, 蒋先敏, 尹华军, 等. 不同林龄云杉人工林的根系分泌物与土壤微生物. 应用生态学报, 2014, 25(2): 325-332 [Li J, Jiang X-M, Yin H-J, et al. Root exudates and soil microbes in three Picea asperata plantations with different stand ages. Chinese Journal of Applied Ecology, 2014, 25(2): 325-332] [17] Canarini A, Kaiser C, Merchant A, et al. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science, 2019, 10: 157, doi: 10.3389/fpls.2019.00157 [18] Gupta A, Patel AK, Gupta D, et al. Chapter 13: Rhi-zospheric remediation of organic pollutants from the soil: A green and sustainable technology for soil clean up//Singh P, Kumar A, Borthakur A, eds. Abatement of Environmental Pollutants. Amsterdam, the Netherlands: Elsevier, 2020: 263-286 [19] More S. Root exudates a key factor for soil and plant: An overview. The Pharma Innovation, 2019, 8: 449-459 [20] Akitomo K, Suzanne D, Ryan PR, et al. Microbiome and exudates of the root and rhizosphere of Brachypo-dium distachyon, a model for wheat. PLoS One, 2016, 11(10): doi: 10.1371/journal.pone.0164533 [21] Wu J, Yu S. Effect of root exudates of Eucalyptus urophylla and Acacia mearnsii on soil microbes under simulated warming climate conditions. BMC Microbiology, 2019, 19: 224, doi: 10.1186/s12866-019-1604-6 [22] Ma Y, Oliveira RS, Freitas H, et al. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Frontiers in Plant Science, 2016, 7: 918, doi: 10.3389/fpls.2016.00918 [23] Bali AS, Sidhu GPS, Kumar V. Root exudates ameliorate cadmium tolerance in plants: A review. Environmental Chemistry Letters, 2020, 18: 1243-1275 [24] Koo BJ, Adriano DC, Bolan NS, et al. Root exudates and microorganisms//Hillel D, ed. Encyclopedia of Soils in the Environment. Amsterdam, the Netherlands: Elsevier, 2005: 421-428 [25] Gonzólez-Lápez O, Ruano-Rosa D. Chapter 8: Root exudates, a key factor in the plant-bacteria interaction mechanisms//Sharma V, Salwan R, Al-Ani LKT, eds. Molecular Aspects of Plant Beneficial Microbes in Agriculture. London, UK: Academic Press, 2020: 111-121 [26] Dunn C, Zieliński P, Kent M, et al. Investigating whether light intensity can modify decomposition rates in peatlands through control of the ‘enzymic latch'. Ecological Engineering, 2018, 114: 167-172 [27] Martin B, Gleeson D, Statton J, et al. Low light availability alters root exudation and reduces putative beneficial microorganisms in seagrass roots. Frontiers in Microbiology, 2018, 8: 2667, doi: 10.3389/fmicb.2017.02667 [28] Meier IC, Tückmantel T, Heitkötter J, et al. Root exudation of mature beech forests across a nutrient availabi-lity gradient: The role of root morphology and fungal activity. New Phytologist, 2020, 226: 583-594 [29] Steinauer K, Chatzinotas A, Eisenhauer N. Root exudate cocktails: The link between plant diversity and soil microorganisms? Ecology and Evolution, 2016, 6: 7387-7396 [30] Sasse J, Kosina SM, De Raad M, et al. Root morpho-logy and exudate availability are shaped by particle size and chemistry in Brachypodium distachyon. Plant Direct, 2020, 4, doi: 10.1002/pld3.207 [31] Rohrbacher F, St-Arnaud M. Root exudation: The ecological driver of hydrocarbon rhizoremediation. Agro-nomy, 2016, 6: 19, doi: 10.3390/agronomy6010019 [32] Li S, Zhou X, Li H, et al. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic arabidopsis. PLoS One, 2015, 10(8): e0136647, doi: 10.1371/journal.pone.0136647 [33] Nozoye T, Nagasaka S, Kobayashi T, et al. The phytosiderophore efflux transporter TOM2 is involved in metal transport in rice. Journal of biological chemistry, 2015, 290: 27688-27699 [34] Massalha H, Korenblum E, Tholl D, et al. Small molecules below-ground: The role of specialized metabolites in the rhizosphere. The Plant Journal, 2017, 90: 788-807 [35] Shitan N, Yazaki K. Dynamism of vacuoles toward survival strategy in plants. Biochimica et Biophysica Acta Biomembranes, 2020, 1862: 183127, doi: 10.1016/j.bbamem.2019.183127 [36] Badri DV, Loyola-Vargas VM, Broeckling CD, et al. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiology, 2008, 146: 762-771 [37] Wen T, Zhao M, Liu T, et al. High abundance of Ralstonia solanacearum changed tomato rhizosphere micro-biome and metabolome. BMC Plant Biology, 2020, 20: 166, doi: 10.1186/s12870-020-02365-9 [38] Pylak M, Oszust K, Frac M. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Reviews in Environmental Science and Bio/Technology, 2019, 18: 597-616 [39] Singh D, Prasanna R. Potential of microbes in the biofortification of Zn and Fe in dietary food grains: A review. Agronomy for Sustainable Development, 2020, 40: 15, doi: 10.1007/s13593-020-00619-2 [40] Chen C, Li Z, Li S, et al. Effects of root exudates on the activation and remediation of cadmium ion in contaminated soils. Environmental Science and Pollution Research, 2020, 27: 2926-2934 [41] Marra LM, De Oliveira-Longatti SM, Soares CRFS, et al. Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Brazilian Journal of Microbiology, 2015, 46: 367-375 [42] Farooq M, Jabran K, Cheema ZA, et al. The role of allelopathy in agricultural pest management. Pest Mana-gement Science, 2011, 67: 493-506 [43] Guerrieri A, Dong L, Bouwmeester HJ. Role and exploitation of underground chemical signaling in plants. Pest Management Science, 2019, 75: 2455-2463 [44] Li B, Li YY, Wu HM, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6496-6501 [45] Kato-Noguchi H. Involvement of allelopathy in the invasive potential of Tithonia diversifolia. Plants, 2020, 9: 766, doi: 10.3390/plants9060766 [46] Korenblum E, Dong Y, Szymanski J, et al. Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 3874-3883 [47] Tian P, Razavi BS, Zhang X, et al. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability. Soil Bio-logy and Biochemistry, 2020, 141: 107662, doi: 10.1016/j.soilbio.2019.107662 [48] Micallef SA, Shiaris MP, Colón-Carmona A. Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. Journal of Experimental Botany, 2009, 60: 1729-1742 [49] Zhou X, Wu F. Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities. Scientific Reports, 2018, 8: 4929, doi: 10.1038/s41598-018-23406-2 [50] Naveed M, Brown LK, Raffan AC, et al. Plant exudates may stabilize or weaken soil depending on species, origin and time. European Journal of Soil Science, 2017, 68: 806-816 [51] Li J, Yuan X, Ge L, et al. Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agriculture, Ecosystems & Environment, 2020, 304: 107126, doi: 10.1016/j.agee.2020.107126 [52] Macias-Benitez S, García-Martínez A, Caballero P, et al. Rhizospheric organic acids as biostimulants: Monitoring feedbacks on soil microorganisms and biochemical properties. Frontiers in Plant Science, 2020, 11: 633, doi: 10.3389/fpls.2020.00633 [53] Dalcorso G, Fasani E, Manara A, et al. Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 2019, 20: 3412, doi: 10.3390/ijms20143412 [54] Suman J, Uhlik O, Viktorova J, et al. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Frontiers in Plant Science, 2018, 9: 1476, doi: 10.3389/fpls.2018.01476 [55] Yan A, Wang Y, Tan SN, et al. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science, 2020, 11: 359, doi: 10.3389/fpls.2020.00359 [56] Gupta P, Rani R, Usmani Z, et al. Chapter 5: The role of plant-associated bacteria in phytoremediation of trace metals in contaminated soils//Singh JS, Singh DP, eds. New and Future Developments in Microbial Biotechnology and Bioengineering. Amsterdam, the Netherlands: Elsevier, 2019: 69-76 [57] Fagorzi C, Checcucci A, Dicenzo GC, et al. Harnessing rhizobia to improve heavy-metal phytoremediation by legumes. Genes, 2018, 9: 542, doi: 10.3390/genes9110542 [58] Hassan Sel D, Boon E, St-Arnaud M, et al. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Molecular Ecology, 2011, 20: 3469-3483 [59] Wu B, Wang Z, Zhao Y, et al. The performance of biochar-microbe multiple biochemical material on bioreme-diation and soil micro-ecology in the cadmium aged soil. Science of the Total Environment, 2019, 686: 719-728 [60] Huang Y, Yesilonis I, Szlavecz K. Soil microarthropod communities of urban green spaces in Baltimore, Maryland, USA. Urban Forestry & Urban Greening, 2020, 53: 126676, doi: 10.1016/j.ufug.2020.126676 [61] Qian Z, Mao Y, Xiong S, et al. Historical residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in a flood sediment profile from the Longwang Cave in Yichang, China. Ecotoxico-logy and Environmental Safety, 2020, 196: 110542, doi: 10.1016/j.ecoenv.2020.110542 [62] Ite AE, Ibok UJ. Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. International Journal of Environmental Bioremediation & Biodegradation, 2019, 7: 1-19 [63] Reichenauer TG, Germida JJ. Phytoremediation of organic contaminants in soil and groundwater. ChemSusChem, 2008, 1: 708-717 [64] Rajtor M, Piotrowska-Seget Z. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Chemosphere, 2016, 162: 105-116 [65] Hasan SS, Zhen L, Miah MG, et al. Impact of land use change on ecosystem services: A review. Environmental Development, 2020, 34: 100527, doi: 10.1016/j.envdev.2020.100527 [66] Xu H, Shao H, Lu Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere. Ecotoxicology and Environmental Safety, 2019, 182: 109476, doi: 10.1016/j.ecoenv.2019.109476 [67] Lin Y, Wang L, Li R, et al. How do root exudates of bok choy promote dibutyl phthalate adsorption on mollisol? Ecotoxicology and Environmental Safety, 2018, 161: 129-136 [68] Costa OYA, Raaijmakers JM, Kuramae EEJFIM. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Frontiers in Microbio-logy, 2018, 9: 1636, doi: 10.3389/fmicb.2018.01636 |
[1] | 陈月鹏, 李石开, 安波, 朱勇, 邹汉鲁, 崔松祥, 付宏燕, 毛瑢, 张芸. 亚热带树种的菌根和根外菌丝对土壤氮矿化及酶活性的影响 [J]. 应用生态学报, 2023, 34(5): 1235-1243. |
[2] | 冯嘉仪, 阮可瑾, 苏思宁, 张学平, 吴道铭, 万利鑫, 曾曙才. 构树的污泥适应性及养分和重金属吸收累积特征 [J]. 应用生态学报, 2022, 33(6): 1629-1638. |
[3] | 李晓天, 黄焯燊, 汤有千, 林昌权, 王春铭. 畜禽养殖废物中抗生素和重金属抗性基因的产生机制和控制方法研究进展 [J]. 应用生态学报, 2022, 33(6): 1719-1728. |
[4] | 吴磊, 孙奇, 赵骥民, 王德利, 张彦文. 花部重金属积累对植物-传粉昆虫互惠关系影响的研究进展 [J]. 应用生态学报, 2022, 33(5): 1429-1434. |
[5] | 张海龙, 武润琴, 李佳佳, 王睿强, 夏侯龙, 杨春霞, 上官周平. 根系分泌物C∶N对刺槐林地土壤理化特征和土壤呼吸的影响 [J]. 应用生态学报, 2022, 33(4): 949-956. |
[6] | 董晓全, 邢鹤严, 张书源, 陈佳倩, 谢子曦, 邓文琪, 于珊, 吴道铭. 表施和混施污泥对团花根系生长的影响 [J]. 应用生态学报, 2022, 33(12): 3388-3394. |
[7] | 霍彦慧, 王美娥, 姜瑢, 陈卫平. 典型矿冶区周边土壤微生物功能特征及影响因素 [J]. 应用生态学报, 2022, 33(12): 3403-3409. |
[8] | 王亚君, 王腾琦, 侯志洁, 王学浩, 苏高杰, 刘义强, 周泉. 根系分泌物对紫云英油菜间作的响应 [J]. 应用生态学报, 2021, 32(5): 1783-1790. |
[9] | 方笑堃, 陈志炜, 程兆康, 姜海波, 邱丹, 罗小三. 太阳辐射减弱对水稻光合生理特性和中微量元素积累的影响 [J]. 应用生态学报, 2021, 32(4): 1345-1351. |
[10] | 杨源通, 曾曙才, 冯嘉仪, 彭维新, 吴道铭. 施用污泥等废料对稀土矿废弃地土壤中麻疯树生长和元素吸收的影响 [J]. 应用生态学报, 2021, 32(2): 609-617. |
[11] | 唐敏, 张欣, 谭欣蕊, 刘燕, 王美仙. 锌在3种乔木中的积累及其亚细胞分布和化学形态 [J]. 应用生态学报, 2021, 32(12): 4298-4306. |
[12] | 樊瑾,李诗瑶,杜雅仙,王融融,余海龙,黄菊莹. 火电厂周边不同生物结皮细菌群落特征差异及其影响因素 [J]. 应用生态学报, 2021, 32(11): 4107-4118. |
[13] | 邓月强, 曹雪莹, 谭长银, 孙丽娟, 彭曦, 柏佳, 黄硕霈. 巨大芽孢杆菌对伴矿景天修复镉污染农田土壤的强化作用 [J]. 应用生态学报, 2020, 31(9): 3111-3118. |
[14] | 张俊华, 尚天浩, 刘吉利, 孙媛, 贾萍萍. 宁夏西吉县养牛场粪污和周边土壤重金属及细菌群落特征 [J]. 应用生态学报, 2020, 31(9): 3119-3130. |
[15] | 甘林, 代玉立, 杨秀娟, 杜宜新, 石妞妞, 阮宏椿, 陈福如. 香蕉抗(感)病品种根系分泌物对枯萎病菌和枯草芽孢杆菌的生物效应 [J]. 应用生态学报, 2020, 31(7): 2279-2286. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||