[1] Mathur S, Agrawal D, Jajoo A. Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2014, 137: 116-126 [2] 舒锐, 焦健, 臧传江, 等. 我国草莓产业现状及发展建议. 中国果菜, 2019, 39(1): 51-53 [Shu R, Jiao J, Zang C-J, et al. The current situation and development suggestions of strawberry industry in China. China Fruit and Vegetable, 2019, 39(1): 51-53] [3] 宋金艳, 刘东焕, 赵世伟, 等. 高温伤害光合机构原初位点的研究进展. 生命科学, 2008, 20(2): 263-267 [Song J-Y, Liu D-H, Zhao S-W, et al. Advances in studies on primary site of photosynthetic apparatus injured by high temperature. Chinese Bulletin of Life Sciences, 2008, 20(2): 263-267] [4] 马晓娣, 彭惠茹, 汪矛, 等. 作物耐热性的评价. 植物学通报, 2004, 21(4): 411-418 [Ma X-D, Peng H-R, Wang M, et al. Evaluation of heat tolerance in crop. Chinese Bulletin of Botany, 2004, 21(4): 411-418] [5] 朱健康, 倪建平. 植物非生物胁迫信号转导及应答. 中国稻米, 2016, 22(6): 52-60 [Zhu J-K, Ni J-P. Abiotic stress signaling and responses in plants. China Rice, 2016, 22(6): 52-60] [6] Ashraf M, Harris PJC. Photosynthesis under stressful environments: An overview. Photosynthetica, 2013, 51: 163-190 [7] 宋奇娉, 封鹏雯, 刘洋, 等. PSⅡ组装与修复循环机制研究进展. 植物生理学报, 2019, 55(2): 133-140 [Song Q-P, Feng P-W, Liu Y, et al. The research progress of the mechanism on PSII assemble and repair circulation. Plant Physiology Journal, 2019, 55(2): 133-140] [8] Xu C, Yang ZQ, Yang SQ, et al. High humidity alleviates photosynthetic inhibition and oxidative damage of tomato seedlings under heat stress. Photosynthetica, 2020, 58: 146-155 [9] Yamori W, Hikosaka K, Way DA. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation. Photosynthesis Research, 2014, 119: 101-117 [10] Yordanov I, Dilova S, Petkova R, et al. Mechanisms of the temperature damage and acclimation of the photosynthetic apparatus. Photobiochemistry and Photobiophysics, 1986, 12: 147-155 [11] Tang YL, Wen XG, Lu QT, et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiology, 2007, 143: 629-638 [12] Zhao BB, Wang J, Gong HM, et al. Effects of heat stress on PSII photochemistry in a cyanobacterium Spiru-lina platensis. Plant Science, 2008, 175: 556-564 [13] Yang ZQ, Xu C, Wang MT, et al. Enhancing the thermotolerance of tomato seedlings by heat shock treatment. Photosynthetica, 2019, 57: 1184-1192 [14] Mathur S, Jajoo A, Mehta P, et al. Analysis of elevated temperature-induced inhibition of photosystem Ⅱ using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 2011, 13: 1-6 [15] Yusuf MA, Kumar D, Rajwanshi R, et al. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochimica et Biophysica Acta-Bioenergetics, 2010, 1797: 1428-1438 [16] Hao L, Guo L, Li R, et al. Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Scientia Horticulturae, 2019, 246: 251-264 [17] 张海娜, 鲁向晖, 金志农, 等. 高温条件下稀土尾砂干旱对4种植物生理特性的影响. 生态学报, 2019, 39(7): 2426-2434 [Zhang H-N, Lu X-H, Jin Z-N, et al. Effects of drought on physiological characteristics of seedlings of four species grown on rare earth mill tailings at high temperatures. Acta Ecologica Sinica, 2019, 39(7): 2426-2434] [18] 吴永波, 叶波. 高温干旱复合胁迫对构树幼苗抗氧化酶活性和活性氧代谢的影响. 生态学报, 2016, 36(2): 403-410 [Wu Y-B, Ye B. Effects of combined elevated temperature and drought stress on anti-oxidative enzyme activities and reactive oxygen species metabolism of Broussonetia papyrifera seedlings. Acta Ecologica Sinica, 2016, 36(2): 403-410] [19] Xu C, Yang ZQ, Wang MT, et al. Effects of low temperature on photosynthesis and antioxidant enzyme activities of Panax notoginseng during seeding stage. International Journal of Agriculture and Biology, 2019, 21: 1279-1286 [20] Shim JS, Oh N, Chung PJ, et al. Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science, 2018, 9: 310 [21] Su WC, Sun LL, Wu RH, et al. Effect of imazapic residues on photosynthetic traits and chlorophyll fluorescence of maize seedlings. Photosynthetica, 2017, 55: 294-300 [22] Ye ZP, Suggett DJ, Robakowski P, et al. A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem Ⅱ in C3 and C4 species. New Phytologist, 2013, 199: 110-120 [23] Uchida A, Jagendorf AT, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523 [24] 李忠光, 龚明. 植物中超氧阴离子自由基测定方法的改进. 云南植物研究, 2005, 27(2): 211-216 [Li Z-G, Gong M. Improvement of measurement method for superoxide anion radical in plant. Acta Botanica Yunnanica, 2005, 27(2): 211-216] [25] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000 [Li H-S, Sun Q, Zhao S-J, et al. Experimental Principle and Technique for Plant Physiology and Biochemistry. Beijing: Higher Education Press, 2000] [26] 李小方, 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2009 [Li X-F, Zhang Z-L. Experimental Guidance of Plant Physiology. Beijing: Higher Education Press, 2009] [27] 杨再强, 朱静, 张波, 等. 高温处理对结果期草莓叶片衰老特征的影响. 中国农业气象, 2012, 33(4): 512-518 [Yang Z-Q, Zhu J, Zhang B, et al. Effect of high temperature on the senescence feature of strawberry leaves during the fruit stage. Chinese Journal of Agrometeorology, 2012, 33(4): 512-518] [28] Mareckova M, Bartak M, Hajek J. Temperature effects on photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum: A chlorophyll fluorescence study. Polar Biology, 2019, 42: 685-701 [29] Lu T, Yu H, Li Q, et al. Improving plant growth and alleviating photosynthetic inhibition and oxidative stress from low-light stress with exogenous GR24 in tomato (Solanum lycopersicum L.) seedlings. Frontiers in Plant Science, 2019, 10: 490 [30] 杨军, 蔡哲, 刘丹, 等. 高温下喷施水杨酸和磷酸二氢钾对中稻生理特征和产量的影响. 应用生态学报, 2019, 30(12): 4202-4210 [Yang J, Cai Z, Liu D, et al. Effects of spraying salicylic acid and potassium dihydrogen phosphate on physiological characteristics and grain yield of single-season rice under high temperature condition. Chinese Journal of Applied Ecology, 2019, 30(12): 4202-4210] [31] Zhou R, Yu X, Kjær KH, et al. Screening and validation of tomato genotypes under heat stress using Fv/Fm to reveal the physiological mechanism of heat tolerance. Environmental and Experimental Botany, 2015, 118: 1-11 [32] Guo YY, Li H, Liu J, et al. Melatonin alleviates drought-induced damage of photosynthetic apparatus in maize seedlings. Russian Journal of Plant Physiology, 2020, 67: 312-322 [33] Strasser RJ, Tsimilli-Michael M, Srivastava A. Analysis of the Chlorophyll a Fluorescence Transient. Dordrecht: Springer, 2004 [34] Strasserf RJ, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology, 1995, 61: 32-42 [35] Huan W, Yang YJ, Zhang JL, et al. Superoxide generated in the chloroplast stroma causes photoinhibition of photosystem I in the shade-establishing tree species Psychotria henryi. Photosynthesis Research, 2017, 132: 293-303 [36] Huang W, Yang YJ, Hu H, et al. Responses of photosystem I compared with photosystem Ⅱ to fluctuating light in the shade-establishing tropical tree species Psychotria henryi. Frontiers in Plant Science, 2016, 7: 1549 [37] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 2017, 524: 13-30 [38] Xie DF, Zhang GC, Xia XX, et al. The effects of phenolic acids on the photosynthetic characteristics and growth of Populus × euramericana cv. ‘Neva’ seedlings. Photosynthetica, 2018, 56: 981-988 [39] Camejo D, Jiménez A, Alarcón JJ, et al. Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology, 2006, 33: 177-187 |