[1] 宋达泉, 贺红士, 翟强. 我国滨海盐土的分类及开发应用. 中国土壤学会盐渍土与分类分级会议, 烟台, 1987: 189-196 [Song D-Q, He H-S, Zhai Q. Classification, development and application of coastal saline soil in China. Conference on Saline Soils and Saline Soils Classification of Soil Science Society of China, Yantai, 1987: 189-196] [2] 王遵亲, 祝寿泉, 俞仁培, 等. 中国盐碱土. 北京: 科学出版社, 1993: 1-7 [Wang Z-Q, Zhu S-Q, Yu R-P, et al. Saline Alkali Soil in China. Beijing: Science Press, 1993: 1-7] [3] 李晨, 张国伟, 周治国, 等. 滨海盐土土壤水分的高光谱参数及估测模型. 应用生态学报, 2016, 27(2): 525-531 [Li C, Zhang G-W, Zhou Z-G, et al. Hyperspectral parameters and prediction model of soil moisture in coastal saline. Chinese Journal of Applied Ecology, 2016, 27(2): 525-531] [4] 吴洪生, 陈小青, 周晓冬, 等. 磷石膏改良剂对江苏如东滨海盐土理化性状及小麦生长的影响. 土壤学报, 2012, 49(6): 1262-1266 [Wu H-S, Chen X-Q, Zhou X-D, et al. Effects of soil amendment phosphogypsum on physical and chemical properties of and wheat growth in coastal saline soil in Rudong, Jiangsu. Acta Pedologica Sinica, 2012, 49(6): 1262-1266] [5] Salazar S, Sanchez LE, Alvarez J, et al. Correlation among soil enzymatic activities under different forest system management practices. Ecological Engineering, 2011, 37: 1123-1131 [6] 王艳, 廉晓娟, 王正祥, 等. 不同改良措施对滨海盐土理化性状的影响. 水土保持学报, 2015, 29(4): 236-240 [Wang Y, Lian X-J, Wang Z-X, et al. Effects of different improvement measures on physicochemical properties of coastal saline soil. Journal of Soil and Water Conservation, 2015, 29(4): 236-240] [7] Yuan BC, Li ZZ, Liu H, et al. Microbial biomass and activity in salt affected soils under arid conditions. Applied Soil Ecology, 2007, 35: 319-328 [8] 林先贵, 陈瑞蕊, 胡君利. 土壤微生物资源管理、应用技术与学科展望. 生态学报, 2010, 30(24): 7029-7037 [Lin X-G, Chen R-R, Hu J-L. The management and application of soil microbial resources and the perspectives of soil microbiology. Acta Ecologica Sinica, 2010, 30(24): 7029-7037] [9] 刘雅辉, 孙建平, 马佳, 等. 3种耐盐植物对滨海盐土化学性质及微生物群落结构的影响. 农业资源与环境学报, 2021, 38(1): 28-35 [Liu Y-H, Sun J-P, Ma J, et al. Effects of 3 salt-tolerant plants on the chemical properties and microbial community structure of coastal saline soil. Journal of Agricultural Resources and Environment, 2021, 38(1): 28-35] [10] 王静娅, 王明亮, 张凤华. 干旱区典型盐生植物群落下土壤微生物群落特征. 生态学报, 2016, 36(8): 2363-2372 [Wang J-Y, Wang M-L, Zhang F-H. Soil microbial properties under typical halophytic vegetation communities in arid regions. Acta Ecologica Sinica, 2016, 36(8): 2363-2372] [11] Hollister EB, Engledow AS, Hammett AJ, et al. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. The ISME Journal, 2010, 4: 829 [12] Dini-Andreote F, Stegen JC, Van Elsas JD, et al. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 1326-1332 [13] Graham EB, Crump AR, Resch CT, et al. Deterministic influences exceed dispersal effects on hydrologically-connected microbiomes. Environmental Microbiology, 2017, 19: 1552-1567 [14] Knelman JE, Nemergut DR. Changes in community assembly may shift the relationship between biodiversity and ecosystem function. Frontiers in Microbiology, 2014, 5: 10.3389/fmicb.2014.00424 [15] Nemergut DR, Schmidt SK, Fukami T, et al. Patterns and processes of microbial community assembly. Microbio-logy and Molecular Biology Reviews, 2013, 77: 342-356 [16] Zhou JZ, Ning DL. Stochastic community assembly: Does it matter in microbial ecology? Microbiology and Molecular Biology Reviews, 2017, 81: 2-17 [17] Vellend M. Conceptual synthesis in community ecology. Quarterly Review of Biology, 2010, 85: 183-206 [18] Stegen JC, Lin XJ, Fredrickson JK, et al. Quantifying community assembly processes and identifying features that impose them. The ISME Journal, 2013, 7: 2069-2079 [19] Danczak RE, Sawyer AH, Williams KH, et al. Seasonal hyporheic dynamics control coupled microbiology and geochemistry in Colorado River sediments. Journal of Geophysical Research Biogeosciences, 2016, 121: 2976-2987 [20] Stegen JC, Johnson T, Fredrickson JK, et al. Influences of organic carbon speciation on hyporheic corridor biogeochemistry and microbial ecology. Nature Communications, 2018, 9: 585 [21] Xiong JB, Zhu JY, Dai WF, et al. Integrating gut microbiota immaturity and disease-discriminatory taxa to diagnose the initiation and severity of shrimp disease. Environmental Microbiology, 2017, 19: 1490-1501 [22] Feng YZ, Chen RR, Stegen JC, et al. Two key features influencing community assembly processes at regional scale: Initial state and degree of change in environmental conditions. Molecular Ecology, 2018, 27: 5238-5251 [23] Tripathi BM, Stegen JC, Kim M, et al. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 2018, 12: 1072-1083 [24] Wang JJ, Shen J, Wu YC, et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: Deterministic versus stochastic processes. The ISME Journal, 2013, 7: 1310-1321 [25] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000 [Lu R-K. Analytical Methods for Soil and Agro-chemistry. Beijing: China Agricultural Science and Technology Press, 2000] [26] Chu HY, Lin XG, Fujii T, et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 2007, 39: 2971-2976 [27] Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7: 335-336 [28] Shaw AK, Halpern AL, Beeson K, et al. It's all relative: Ranking the diversity of aquatic bacterial communities. Environmental Microbiology, 2008, 10: 2200-2210 [29] Stegen JC, Lin XJ, Konopka AE, et al. Stochastic and deterministic assembly processes in subsurface microbial communities. The ISME Journal, 2012, 6: 1653-1664 [30] 蔡阿兴, 陈章英, 蒋正琦, 等. 我国不同盐渍地区盐分含量与电导率的关系. 土壤学报, 1997, 34(1): 54-57 [Cai A-X, Chen Z-Y, Jiang Z-Q, et al. The relationship of soil salt content and conductivity in different saline regions of China. Acta Pedologica Sinica, 1997, 34(1): 54-57] [31] 林先贵. 土壤微生物研究原理与方法. 北京: 高等教育出版社, 2010: 245 [Lin X-G. Principles and Methods of Soil Microbiology Research. Beijing: Higher Education Press, 2000: 245] [32] Feng YZ, Guo ZY, Zhong LH, et al. Balanced fertilization decreases environmental filtering on soil bacterial community assemblage in North China. Frontiers in Microbiology, 2017, 8: 2376 [33] Wagg C, Bender SF, Widmer F, et al. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111: 5266-5270 [34] Zhang KP, Shi Y, Cui XQ, et al. Salinity is a key determinant for soil microbial communities in a desert ecosystem. mSystems, 2019, 4: e00225-18 [35] Chen L, Hu Q, Zhang X, et al. Effects of salinity on the biological performance of anaerobic membrane bioreactor. Journal of Environmental Management, 2019, 238: 263-273 [36] Walsh DA, Papke RT, Doolittle WF. Archaeal diversity along a soil salinity gradient prone to disturbance. Environmental Microbiology, 2005, 7: 1655-1666 [37] Canfora L, Salvati L, Benedetti A, et al. Is soil microbial diversity affected by soil and groundwater salinity? Evidences from a coastal system in central Italy. Environmental Monitoring and Assessment, 2017, 189: 319, doi: 10.1007/s10661-017-6040-1 [38] 牛世全, 龙洋, 李海云, 等. 河西走廊盐碱土中未培养放线菌多样性研究. 西北师范大学学报: 自然科学版), 2017, 53(3): 88-92 [Niu S-Q, Long Y, Li H-Y, et al. Research on diversity of uncultured actionmycetes in saline-alkali soil from Hexi Corridor. Journal of Northwest Normal University: Natural Science, 2017, 53(3): 88-92] [39] Fierer N, Ladau J, Clemente JC, et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science, 2013, 342: 621-624 [40] Galand PE, Olivier P, Corentin H, et al. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. The ISME Journal, 2018, 12: 2470-2478 [41] Muhammad S, Müller T, Joergensen RG. Relationships between soil biological and other soil properties in saline and alkaline arable soils from the Pakistani Punjab. Journal of Arid Environments, 2008, 72: 448-457 [42] 弋良朋, 张辉. 滨海4种盐生植物根际土壤酶活性特征与主要养分的关系. 生态环境学报, 2011, 20(2): 270-275 [Yi L-P, Zhang H. Characteristics of soil enzymatic activity and relationship with the main nutrient in the rhizosphere of four littoral halophytes. Ecology and Environmental Sciences, 2011, 20(2): 270-275] [43] 席峰, 郑天凌, 焦念志, 等. 深海微生物多样性形成机制浅析. 地球科学进展, 2004, 19(1): 38-46 [Xi F, Zheng T-L, Jiao N-Z, et al. A preliminary analysis of mechanism of deep sea microorganism diversity. Advance in Earth Sciences, 2004, 19(1): 38-46] [44] 王伟伟, 唐鸿志, 许平. 嗜盐菌耐盐机制相关基因的研究进展. 微生物学通报. 2015, 42(3): 550-558 [Wang W-W, Tang H-Z, Xu P. Salt-tolerance related genes in halophilic bacteria and archaea. Microbiology China, 2015, 42(3): 550-558] [45] 陈燕飞. 渗透压对细菌的影响. 太原师范学院学报:自然科学版, 2012, 11(1): 136-139 [Chen Y-F. Osmosis for the influence of bacteria. Journal of Taiyuan Normal University: Natural Science, 2012, 11(1): 136-139] [46] Rath KM, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biology and Biochemistry, 2015, 81: 108-123 [47] 吴龙华, 张素君. 有机物料对黄河三角洲滨海盐土根际效应的影响Ⅰ——养分和酶生物学效应. 应用生态学报, 1995, 6(2): 160-165 [Wu L-H, Zhang S-Z. Rhizospheric effects of organic material on coastal saline soil in Huanghe River Delta Ⅰ: Effect on soil nutrient and enzyme activity. Chinese Journal of Applied Ecology, 1995, 6(2): 160-165] |