[1] 胡旺, 赵杭, 周旋, 等. 施用南荻生物炭对不同类型土壤氨挥发的影响. 应用生态学报, 2022, 33(7): 1919-1926 [2] Liu Y, Deak N, Wang Z, et al Tunable and functional deep eutectic solvents for lignocellulose valorization. Nature Communications, 2021, 12: 5424 [3] Del Menezzi CHS, De Souza RQ, Thompson RM, et al. Properties after weathering and decay resistance of a thermally modified wood structural board. International Biodeterioration & Biodegradation, 2008, 62: 448-454 [4] Alonso-Pernas P, Bartram S, Arias-Cordero EM, et al. In vivo isotopic labeling of symbiotic bacteria involved in cellulose degradation and nitrogen recycling within the gut of the forest cockchafer (Melolontha hippocastani). Frontiers in Microbiology, 2017, 8: 1970 [5] Wang ZY, Wang RX, Zhou JS, et al. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. Bioresource Technology, 2020, 297: 122389 [6] 高双喜, 王萱, 任菁. 羊源芽孢纤维素降解菌的筛选与H-7菌株鉴定. 饲料工业, 2019, 40(14): 52-57 [7] 毛婷, 朱瑞清, 牛永艳, 等. 纤维素降解芽孢菌的筛选及产酶条件优化. 中国酿造, 2020, 39(1): 71-76 [8] 孟建宇, 丁雪敏. 低温嗜碱性纤维素降解细菌的分离与鉴定. 中国饲料, 2020(11): 31-33 [9] 黄婉秋, 石冬冬, 蔡红英, 等. 白星花金龟幼虫肠道中纤维素降解菌的筛选及其全基因组分析. 中国农业科技导报, 2021, 23(6): 51-58 [10] 刘亚男, 郗敏, 张希丽, 等. 中国湿地碳储量分布特征及其影响因素. 应用生态学报, 2019, 30(7): 2481-2489 [11] Dhal PK, Kopprio GA, Gärdes A. Insights on aquatic microbiome of the Indian sundarbans mangrove areas. PLoS One, 2020, 15(2): e0221543 [12] Ghizelini AM, Mendonça-Hagler LC, Macrae A. Microbial diversity in Brazilian mangrove sediments: A mini review. Brazilian Journal of Microbiology, 2012, 43: 1242-1254 [13] Shiau YJ, Chiu CY. Biogeochemical processes of C and N in the soil of mangrove forest ecosystems. Forests, 2020, 11: 492 [14] 周煜琦, 张照婧, 位光山, 等. 全球变化下海岸带微生物生态研究进展. 微生物学报, 2021, 61(6): 1743-1760 [15] Cinco-Castro S, Herrera-Silveira J, Comín F. Sedimentation as a support ecosystem service in different ecological types of mangroves. Frontiers in Forests and Global Change, 2022, 5: 733820 [16] 王兴文, 李发弟, 赵圣国, 等. 奶牛瘤胃中一株纤维分解菌的筛选与鉴定. 甘肃农业大学学报, 2015, 50(2): 1-5 [17] Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology, 1982, 43: 777-780 [18] 朱军莉, 韩剑众, 励建荣. 纤维素分解菌BSX5的分离、鉴定及产酶条件. 食品与生物技术学报, 2006, 25(3): 15-18 [19] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33: 1870-1874 [20] 李建树, 孙丽坤, 韩向敏, 等. 高温纤维素降解微生物的筛选、鉴定及其酶活力测定. 甘肃农业大学学报, 2020, 55(3): 29-37 [21] 于慧娟, 郭夏丽. 秸秆降解菌的筛选及其纤维素降解性能的研究. 生物技术通报, 2019, 35(2): 64-69 [22] Harindintwali JD, Wang F, Yang W, et al. Harnessing the power of cellulolytic nitrogen-fixing bacteria for biovalorization of lignocellulosic biomass. Industrial Crops and Products, 2022, 186: 115235 [23] 阳刚, 杨第芹, 曹文涛, 等. 白酒糟纤维素降解菌的优选及酒糟降解工艺. 农业工程学报, 2020, 36(13): 212-221 [24] 张智, 尹文哲, 雅男, 等. 大熊猫粪便中纤维素降解菌的筛选及其产酶条件的优化. 动物营养学报, 2017, 29(8): 2817-2825 [25] 侯丽媛, 江经纬, 蒋建东, 等. 假黄单胞菌株J1的筛选及木质纤维素降解基因的生物信息学分析. 南京农业大学学报, 2016, 39(4): 573-581 [26] 钟斌, 陶文玲, 倪思毅, 等. 一株纤维素降解菌的筛选、鉴定及产酶条件优化. 江西农业大学学报, 2021, 43(5): 1167-1177 [27] 张喜庆, 勾长龙, 娄玉杰, 等. 高效纤维素分解菌的分离鉴定及堆肥效果研究. 农业环境科学学报, 2016, 35(2): 380-386 [28] 刘茂柯, 唐玉明, 熊洪, 等. 白酒酒醅纤维素降解菌的多样性分析及其分离筛选. 食品与发酵工业, 2018, 44(4): 35-41 [29] 李静, 张瀚能, 赵翀, 等. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析. 应用与环境生物学报, 2016, 22(4): 689-696 [30] 王希桐, 杨庆昊, 王宇航, 等. 耐盐型纤维素酶产生菌的驯化与筛选. 青岛科技大学学报: 自然科学版, 2021, 42(3): 22-26 [31] 党佳佳, 白洁, 赵阳国, 等. 河口区芦苇湿地一株耐盐纤维素降解菌的筛选鉴定. 中国海洋大学学报: 自然科学版, 2017, 47(增刊1): 11-19 [32] Peng F, Peng P, Xu F, et al. Fractional purification and bioconversion of hemicelluloses. Biotechnology Advances, 2012, 30: 879-903 [33] De Wet BJM, Matthew MKA, Storbeck KH, et al. Characterization of a family 54 α-l-arabinofuranosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology, 2008, 77: 975-983 [34] Dhawan S, Kaur J. Microbial mannanases: An overview of production and applications. Critical Reviews in Biotechnology, 2007, 27: 197-216 [35] Aburto C, Castillo C, Cornejo F, et al. β-Galactosidase from Exiguobacterium acetylicum: Cloning, expression, purification and characterization. Bioresource Technology, 2019, 277: 211-215 [36] Koeck DE, Pechtl A, Zverlov VV, et al. Genomics of cellulolytic bacteria. Current Opinion in Biotechnology, 2014, 29: 171-183 [37] Berlemont R. The Potential for cellulose deconstruction in fungal genomes. Encyclopedia, 2022, 2: 990-1003 [38] Levasseur A, Drula E, Lombard V, et al. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnology for Biofuels, 2013, 6: 41 [39] Thakur V, Kumar V, Kumar V, et al. Xylooligosaccharides production using multi-substrate specific xylanases secreted by a psychrotolerant Paenibacillus sp. PCH8. Carbohydrate Polymer Technologies and Applications, 2022, 3: 100215 [40] 鲍文英, 江经纬, 周云, 等. 一株木质纤维素降解菌的筛选及其全基因组分析. 微生物学报, 2016, 56(5): 765-777 |