[1] 叶功富, 徐俊森, 林武星, 等. 木麻黄连栽林地土壤肥力动态与地力维持. 防护林科技, 1996(Suppl.1): 49-53, 89 [Ye G-F, Xu J-S, Lin W-X, et al. Soil fertility dynamics and soil fertility maintenance of conti-nuous plantation of Casuarina equisetifolia. Protection Forest Science and Technology, 1996(Suppl.1): 49-53, 89] [2] 李钦禄, 莫其锋, 王法明, 等. 华南热带沿海不同林龄木麻黄人工林养分利用特征. 应用与环境生物学报, 2015, 21(1): 139-146 [Li Q-L, Mo Q-F, Wang F-M, et al. Nutrient utilization by Casuarina equisetifolia plantation of different ages in the tropical coastal area of South China. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 139-146] [3] Long F, Xie BB, Liang AJ, et al. Replant problem in Casuarina equisetifolia L.: Isolation and identification of allelochemicals from its roots. Allelopathy Journal, 2018, 43: 73-82 [4] 徐馨, 王法明, 邹碧, 等. 不同林龄木麻黄人工林生物多样性与土壤养分状况研究. 生态环境学报, 2013, 22(9): 1514-1522 [Xu X, Wang F-M, Zou B, et al. Biodiversity and soil nutrient research of Casuarina equisetifolia plantation at different stand ages. Ecology and Environmental Sciences, 2013, 22(9): 1514-1522] [5] 仲崇禄, 张勇. 我国木麻黄的引种培育和经营. 林业科技开发, 2003, 17(2): 3-5 [Zhong C-L, Zhang Y. Introduction cultivation and management of Casuarina equisetifolia in China. Journal of Forestry Engineering, 2003, 17(2): 3-5] [6] 王璇, 李慧敏, 曹婷婷, 等. 不同林龄木麻黄林地土壤真菌多样性及特有真菌代谢产物化感潜力. 应用与环境生物学报, 2017, 23(4): 670-677 [Wang X, Li H-M, Cao T-T, et al. The diversity of soil fungi and allelopathic potentials of special fungal metabolites in Casuarina equisetifolia woodlands of different stand ages. Chinese Journal of Applied and Environmental Biology, 2017, 23(4): 670-677] [7] 张水松, 叶功富, 徐俊森, 等. 木麻黄基干林带类型划分和更新造林关键技术研究. 林业科学, 2002, 38(2): 44-53 [Zhang S-S, Ye G-F, Xu J-S, et al. Stu-dies on the type classification of backbone forest strip for Casuarina equisetifolia and key techniques for its regeneration afforestation. Scientia Silvae Sinicae, 2002, 38(2): 44-53] [8] 叶功富, 侯杰, 张立华, 等. 不同年龄木麻黄林地根际土壤养分含量和酶活性动态. 水土保持学报, 2006, 20(4): 86-89 [Ye G-F, Hou J, Zhang L-H, et al. Rhizosphere soil nutrient and enzyme activity in different stand age of Casurina equisetifolia protection forest. Journal of Soil and Water Conservation, 2006, 20(4): 86-89] [9] Asadu C, Dixon A. Soil nutrient and cassava yield variations under continuous cultivation of three crop mixtures in south-eastern Nigeria. Tropical Agriculture, 2005, 82: 1-7 [10] Weston LA, Alsaadawi IS, Baerson SR. Sorghum alle-lopathy: From ecosystem to molecule. Journal of Chemical Ecology, 2013, 39: 142-153 [11] Vikane JH, Vandvik V, Vetaas OR. Invasion of Calluna heath by native and non-native conifers: The role of succession, disturbance and allelopathy. Plant Ecology, 2013, 214: 975-985 [12] Zhang W, Long XQ, Huo XD, et al. 16S rRNA-Based PCR-DGGE Analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang, China. Microbial Ecology, 2013, 66: 385-393 [13] Jie W, Liu X, Cai B. Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS One, 2013, 8(8), doi: 10.1371/journal.pone.0072898 [14] 徐文辉. 不同代次木麻黄人工林土壤理化性质的动态变化. 福建林业科技, 2012, 39(3): 29-33 [Xu W-H. Dynamics of soil physical and chemical properties of Casuarina equisetifolia plantations of different generations. Journal of Fujian Forestry Science and Technology, 2012, 39(3): 29-33] [15] 林武星. 木麻黄自身他感作用影响因素及缓解. 防护林科技, 2006(6): 1-5 [Lin W-X. Study on effect factors and relief of self-allelopathy of Casuarina. Protection Forest Science and Technology, 2006(6): 1-5] [16] 邓兰桂, 孔垂华, 骆世明. 木麻黄小枝提取物的分离鉴定及其对幼苗的化感作用. 应用生态学报, 1996, 7(2): 145-149 [Deng L-G, Kong C-H, Luo S-M. Isolation and identification of extract from Casuarnia equisetifolia branchlet and its allelopathy on seedling growth. Chinese Journal of Applied Ecology, 1996, 7(2): 145-149] [17] Harleen K, Rajwant K, Surinder K, et al. Taking ecological function seriously: Soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One, 2009, 4(3): e4700 [18] Li XG , Ding CF , Hua K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy. Soil Biology and Biochemistry, 2014,78: 149-159 [19] 吴红淼, 林文雄. 药用植物连作障碍研究评述和发展透视. 中国生态农业学报, 2020, 28(6): 775-793 [Wu H-M, Lin W-X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants. Chinese Journal of Eco-Agriculture, 2020, 28(6): 775-793] [20] Wardle DA, Bardgett RD, Klironomos JN, et al. Ecological linkages between aboveground and belowground biota. Science, 2004, 304: 1629-1633 [21] Zhou LT, Li JJ, Luo Y, et al. Variation in soil fungal community structure during successive rotations of Casua-rina equisetifolia plantations as determined by high-throughput sequencing analysis. Plant Growth Regulation, 2019, 87: 445-453 [22] 叶功富, 侯杰, 张立华, 等. 木麻黄连栽林地根际土壤化学性质与酶活性动态. 亚热带水土保持, 2012, 24(2): 1-4, 19 [Ye G-F, Hou J, Zhang L-H, et al. Rhizosphere soil chemical properties and enzyme activities of multirotation Casuarina equisetifolia plantation. Subtropical Soil and Water Conservation, 2012, 24(2): 1-4, 19] [23] 吴则焰, 赵紫檀, 林文雄, 等. 基于T-RFLP方法的连栽杉木根际土壤细菌群落变化研究. 生态学报, 2019, 39(19): 7134-7143 [Wu Z-Y, Zhao Z-T, Lin W-X, et al. Analysis of terminal restriction fragment length polymorphisms in soil bacterial communities in Chinese fir plantations that have undergone continuous cultivation. Acta Ecologica Sinica, 2019, 39(19): 7134-7143 [24] Ke XB, Feng S, Wang J, et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Systematic and Applied Micro-biology, 2019, 42: 248-260 [25] 方丽英, 吴庆梅, 吕成群, 等. 土壤益生菌对盆栽马尾松苗生长的影响. 四川林业科技, 2007, 28(5): 65-68 [Fang L-Y, Wu Q-M, Lyu C-Q, et al. Effect of soil probiotics on the growth of potted masson’s pine seedlings. Journal of Sichuan Forestry Science and Technology, 2007, 28(5): 65-68] [26] 姜妍, 王浩, 王绍东, 等. 微生物菌肥在农业生产中的应用潜力. 大豆科技, 2010(5): 25-27 [Jiang Y, Wang H, Wang S-D, et al. Application potential of microbial manure in agricultural production. Soybean Bulletin, 2010(5): 25-27] [27] 周柳婷, 李建鹃, 赵艳琳, 等. 基于高通量测序的连栽木麻黄根际土壤细菌群落变化研究. 生态学报, 2020, 40(8): 2670-2679 [Zhou L-T, Li J-J, Zhao Y-L, et al. Variation of bacterial communities in the rhizosphere soils of successive rotations Casuarina equisetifolia plantations based on high-throughput sequencing analysis. Acta Ecologica Sinica, 2020, 40(8): 2670-2679] [28] 李建鹃, 罗扬, 周柳婷, 等. 连栽木麻黄根际微生物群落结构和功能特征. 森林与环境学报, 2020, 40(1): 9-15 [Li J-J, Luo Y, Zhou L-T, et al. Microbial community structure and functional characteristics of rhizosphere soil in different generations of Casuarina equisetifolia plantations. Journal of Forest and Environment, 2020, 40(1): 9-15] [29] Frostegard A, Tunlid A, Baath E. Phospholipid Fatty Acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology, 1993, 59: 3605-3617 [30] Kieft TL, Ringelberg DB, White DC. Changes in ester-linked phospholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium. Applied and Environmental Microbiology, 1994, 60: 3292-3299 [31] 姚晓东, 王娓, 曾辉. 磷脂脂肪酸法在土壤微生物群落分析中的应用. 微生物学通报, 2016, 43(9): 2086-2095 [Yao X-D, Wang W, Zeng H. Application of phospholipid fatty acid method in analyzing soil microbial community composition. Microbiology China, 2016, 43(9): 2086-2095] [32] 于树, 汪景宽, 李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响. 生态学报, 2008, 28(9): 4221-4227 [Yu S, Wang J-K, Li S-Y. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA. Acta Ecologica Sinica, 2008, 28(9): 4221-4227] [33] 张秋芳, 刘波, 林营志, 等. 土壤微生物群落磷脂脂肪酸PLFA生物标记多样性. 生态学报, 2009, 29(8): 4127-4137 [Zhang Q-F, Liu B, Lin Y-Z, et al. The diversity of phospholipid fatty acid (PLFA) biomarker for the microbial community in soil. Acta Ecologica Sinica, 2009, 29(8): 4127-4137] [34] 孙军, 刘东艳. 多样性指数在海洋浮游植物研究中的应用. 海洋学报, 2004, 26(1): 62-75 [Sun J, Liu D-Y. The application of diversity indices in marine phytoplankton studies. Acta Oceanologica Sinica, 2004, 26(1): 62-75] [35] 曹恩珲, 侯宪文, 李光义, 等. 复合菌剂对盆栽番茄土壤理化性质及微生物活性的影响. 生态环境学报, 2011, 20(5): 875-880 [Cao E-H, Hou X-W, Li G-Y, et al. Effect of combination bacteria on soil physicochemical properties and soil microbial activity by pot tomato experiments. Ecology and Environmental Sciences, 2011, 20(5): 875-880] [36] Wei D, Yang Q, Zhang JZ, et al. Bacterial community structure and diversity in a black soil as affected by long-term fertilization. Pedosphere, 2008, 18: 582-592 [37] Parke JL, Gurian-Sherman D. Diversity of the Burkhol-deria cepacia complex and implications for risk assessment of biological control strains. Annual Review of Phytopathology, 2001, 39: 225-258 [38] 王曙光, 侯彦林. 磷脂脂肪酸方法在土壤微生物分析中的应用. 微生物学通报, 2004, 31(1): 114-117 [Wang S-G, Hou Y-L. Application of phospholipid fatty acid method in soil microbial analysis. Microbiology China, 2004, 31(1): 114-117] [39] 颜慧, 蔡祖聪, 钟文辉. 磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用. 土壤学报, 2006, 43(5): 851-859 [Yan H, Cai Z-C, Zhong W-H. PLFA analysis and its applications in the study of soil microbial diversity. Acta Pedologica Sinica, 2006, 43(5): 851-859] [40] 陈泓硕, 马大龙, 姜雪薇, 等. 季节性冻融对扎龙湿地土壤微生物群落结构和胞外酶活性的影响. 环境科学学报, 2020, 40(4): 1443-1451 [Chen H-S, Ma D-L, Jiang X-W, et al. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong Wetland. Acta Scientiae Circumstantiae, 2020, 40(4): 1443-1451] [41] 刘根林. 转基因大豆对根际土壤微生物群落的影响及其多样性指数的度量. 博士论文. 南京: 南京大学, 2012 [Liu G-L. Effects of Transgenic Soybeans on the Rhizospheric Soil Microbial Communities and Their Diversity Indices. PhD Thesis. Nanjing: Nanjing University, 2012] [42] 田雅楠, 王红旗. Biolog法在环境微生物功能多样性研究中的应用. 环境科学与技术, 2011, 34(3): 50-57 [Tian Y-N, Wang H-Q. Application of Biolog to study of environmental microbial function diversity. Environmental Science & Technology, 2011, 34(3): 50-57] [43] van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco-logy Letters, 2008, 11: 296-310 [44] 周桔, 雷霆. 土壤微生物多样性影响因素及研究方法的现状与展望. 生物多样性, 2007, 15(3): 306-311 [Zhou J, Lei T. Review and prospects on methodology and affecting factors of soil microbial diversity. Biodiversity Science, 2007, 15(3): 306-311] [45] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用. 生态学报, 2015, 35(20): 6584-6591 [Shen R-F, Zhao X-Q. Role of soil microbes in the acquisition of nutrients by plants. Acta Ecologica Sinica, 2015, 35(20): 6584-6591] [46] Kalantari S, Marefat A, Naseri B, et al. Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology, 2018, 43: 499-505 [47] 邹春娇, 齐明芳, 马建, 等. Biolog-ECO解析黄瓜连作营养基质中微生物群落结构多样性特征. 中国农业科学, 2016, 49(5): 942-951 [Zou C-J, Qi M-F, Ma J, et al. Analysis of soil microbial community structure and diversity in cucumber continuous cropping nutrition medium by Biolog-ECO. Scientia Agricultura Sinica, 2016, 49(5): 942-951] [48] 贾夏, 董岁明, 周春娟. 微生物生态研究中Biolog Eco微平板培养时间对分析结果的影响. 应用基础与工程科学学报, 2013, 21(1): 10-19 [Jia X, Dong S-M, Zhou C-J. Effects of Biolog Eco-plates incubation time on analysis results in microbial ecology researches. Journal of Basic Science and Engineering, 2013, 21(1): 10-19] [49] Singh G, Mukerji KG. Root exudates as determinant of rhizospheric microbial biodiversity. Microbial Activity in the Rhizosphere, 2006, 7: 39-53 [50] Wu HW, Haig T, Pratley J, et al. Allelochemicals in wheat (Triticum aestivum L.): Cultivar difference in the exudation of phenolic acids. Journal of Agricultural and Food Chemistry, 2001, 49: 3742-3745 [51] 陈军, 黄珊瑜, 刘冰, 等. 不同菌肥处理对太子参根际微生物群落的影响. 福建农业学报, 2015, 30(12): 1171-1177 [Chen J, Huang S-Y, Liu B, et al. Effects of microbial fertilizers on microbial community structure in Radix pseudostellariae rhizosphere. Fujian Journal of Agricultural Sciences, 2015, 30(12): 1171-1177] [52] 游偲, 张立猛, 计思贵, 等. 枯草芽孢杆菌菌剂对烟草根际土壤细菌群落的影响. 应用生态学报, 2014, 25(11): 3323-3330 [You C, Zhang L-M, Ji S-G, et al. Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizospheric soil. Chinese Journal of Applied Ecology, 2014, 25(11): 3323-3330] |