应用生态学报 ›› 2022, Vol. 33 ›› Issue (1): 277-288.doi: 10.13287/j.1001-9332.202201.010
• 综合评述 • 上一篇
全智1*, 刘轩昂2, 刘东3
收稿日期:
2020-04-16
接受日期:
2021-10-28
出版日期:
2022-01-15
发布日期:
2022-07-15
通讯作者:
* E-mail: quanzhi@iae.ac.cn
作者简介:
全智, 男, 1985年生, 博士, 副研究员。主要从事农田氮循环研究。E-mail: quanzhi@iae.ac.cn
基金资助:
QUAN Zhi1*, LIU Xuan-ang2, LIU Dong3
Received:
2020-04-16
Accepted:
2021-10-28
Online:
2022-01-15
Published:
2022-07-15
摘要: 可溶性有机氮(SON)和无机氮是陆地生态系统氮循环过程中重要的氮素形态,互为“源”和“汇”。陆地生态系统中氮素和其他营养元素的矿化、固持、淋溶和植物吸收均与SON有密切的联系。SON在土壤物质循环和养分流动等动态过程中的作用越来越受到关注,已成为生态学、环境学、土壤学、水文学等研究领域的热点之一。本文综述了国内外对土壤SON的研究进展,包括SON的定义和测定、SON库容大小和组成、植物和微生物对SON的吸收利用、SON来源及其影响因素、SON在土壤中的转化运移和淋失等。综合国内外研究结果发现,土壤SON是一个复杂的多组分可溶性有机物的混合物,主要为难降解的物质(惰性成分),能快速矿化分解的物质(活性成分)占比较低。由于惰性成分和活性成分在周转速率上的差异,SON在生态系统氮循环中的地位不能完全通过SON的容量特征来反映。因此,为了更准确地反映SON在氮周转、氮吸收和氮流失中的作用,未来需要创新研究方法并对SON组分加以区分:研究SON在氮转化和氮吸收中的作用时,重点关注SON中的活性成分;研究SON在氮淋溶径流损失中的贡献时,则重点关注SON中的惰性成分。
全智, 刘轩昂, 刘东. 土壤可溶性有机氮研究进展[J]. 应用生态学报, 2022, 33(1): 277-288.
QUAN Zhi, LIU Xuan-ang, LIU Dong. Research progress on soil soluble organic nitrogen[J]. Chinese Journal of Applied Ecology, 2022, 33(1): 277-288.
[1] | 吕贻忠. 土壤学. 北京: 中国农业出版社, 2006 |
[2] | Chen CR, Xu ZH, Zhang S, et al. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil, 2005, 27: 285-297 |
[3] | Jones DL, Shannon D, Murphy DV, et al. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry, 2004, 36: 749-756 |
[4] | Lawes JB, Gilbert JH. On the amount and composition of the rain and drainage waters collected at Rothamstead. Part II. The amount and composition of the drainage waters from unmanured fallow land. Journal of the Royal Agricultural Society of England, 1881, 17: 311-350 |
[5] | Ploeg RR, Bohm W, Kirkhan MB. On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Science Society of America Journal, 1999, 63: 1055-1062 |
[6] | Wymore AS, Rodríguez-Cardona B, McDowell WH. Direct response of dissolved organic nitrogen to nitrate availability in headwater streams. Biogeochemistry, 2015, 126: 1-10 |
[7] | 张亚亚, 李军, 郭颖, 等. 土壤可溶性有机氮的研究进展. 生态学杂志, 2016, 35(6): 1661-1669 |
[8] | Seitzinger S, Sanders R. Contribution of dissolved orga-nic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series, 1997, 159: 1-12 |
[9] | Van Breemen N. Nitrogen cycle: Natural organic tendency. Nature, 2002, 415: 381-382 |
[10] | Ros GH, Hoffland E, Van Kessel C, et al. Extractable and dissolved soil organic nitrogen: A quantitative assessment. Soil Biology and Biochemistry, 2009, 41: 1029-1039 |
[11] | Ros GH, Hoffland E, Temminghoff EJM. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues. Soil Biology and Biochemistry, 2010, 42: 2094-2101 |
[12] | Jones DL, Willet VB. Experimental evaluation of me-thods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biology and Biochemistry, 2006, 38: 991-999 |
[13] | Ge T, Nie S, Huang D, et al. Assessing soluble organic nitrogen pools in horticultural soils: A case study in the suburbs of Shanghai (China). Acta Agriculturae Scandinavica, Section B: Soil and Plant Science, 2010, 60: 529-538 |
[14] | Curtin D, Wright CE, Beare MH, et al. Hot water-extractable nitrogen as an indicator of soil nitrogen availa-bility. Soil Science Society of America Journal, 2006, 70: 1512, doi: 10.2136/sssaj2005.0338 |
[15] | Koroleff F. Simultaneous oxidation of nitrogen and phosphorus compounds by persulfate// Grosshoff K, Eberhodt M, Kremling K, eds. Methods of Seawater Analysis. 2nd Ed. Weinheimer, Germany: Verlag Chemie, 1983: 168-169 |
[16] | 周建斌, 李生秀. 碱性过硫酸钾氧化法测定溶液中全氮含量氧化剂的选择. 植物营养与肥料学报, 1998, 4(3): 299-304 |
[17] | 杨绒. 土壤中可溶性有机氮含量及影响因素研究. 硕士论文. 杨凌: 西北农林科技大学, 2006 |
[18] | Patton CJ, Kryskalla JR. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory: Evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water. Water-Resources Investigations Report, 2003: 4013-4174 |
[19] | Merriam J, McDowell WH, Currie WS. A high-temperature catalytic oxidation technique for determining total dissolved nitrogen. Soil Science Society of America Journal, 1996, 60: 1050-1055 |
[20] | Rogora M, Minella M, Orr A, et al. A comparison between high-temperature catalytic oxidation and persulphate oxidation for the determination of total nitrogen in freshwater. International Journal of Environmental Analytical Chemistry, 2006, 86: 1065-1078 |
[21] | Vandenbruwane J, Neve SD, Qualls RG, et al. Optimization of dissolved organic nitrogen (DON) measurements in aqueous samples with high inorganic nitrogen concentrations. Science of the Total Environment, 2007, 386: 103-113 |
[22] | Alavoine G, Nicolardot B. High-temperature catalytic oxidation method for measuring total dissolved nitrogen in K2SO4 soil extracts. Analytica Chimica Acta, 2001, 445: 107-115 |
[23] | Pelegrí SP, Dolan JR, Rassoulzadegan F. Use of high temperature catalytic oxidation (HTCO) to measure carbon content of microorganisms. Aquatic Microbial Ecology, 1999, 16: 273-280 |
[24] | Lee KS, Lee DS, Lim SS, et al. Nitrogen isotope ratios of dissolved organic nitrogen in wet precipitation in a metropolis surrounded by agricultural areas in southern Korea. Agriculture, Ecosystems and Environment, 2012, 159: 161-169 |
[25] | 全智. 有机肥对设施菜地土壤可溶性有机氮转化与淋失的影响. 博士论文. 北京: 中国科学院大学, 2015 |
[26] | Murphy DV, Macdonald AJ, Stockdale EA, et al. Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils, 2000, 30: 374-387 |
[27] | 葛体达. 番茄对有机氮的吸收及土壤可溶性有机氮行为特性研究. 博士论文. 上海: 上海交通大学, 2008 |
[28] | McNeill AM, Spading GP, Murphy DV. Changes in extractable and microbial C, N, and P in a western Australian wheatbelt soil following simulated summer rainfall. Austrilian Journal of Soil Research, 1998, 36: 841-854 |
[29] | Chapman PJ, Williams BL, Hawkins A. Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol. Soil Biology and Biochemistry, 2001, 33: 1113-1121 |
[30] | 赵满兴, 周建斌, 陈竹君, 等. 不同类型农田土壤对可溶性有机氮、碳的吸附特性. 应用生态学报, 2008, 19(1): 76-80 |
[31] | Bhogal A, Murphy DV, Fortune S, et al. Distribution of nitrogen pools in the soil profile of undisturbed and reseeded grasslands. Biology and Fertility of Soils, 2000, 30: 356-362 |
[32] | Zhong Z, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biology and Biochemistry, 2003, 35: 333-338 |
[33] | Willett VB, Green JJ, Macdonald AJ, et al. Impact of land use on soluble organic nitrogen in soil. Water, Air, and Soil Pollution, 2004, 4: 53-60 |
[34] | Christou M, Avramidesa EJ, Robertsb JP, et al. Dissolved organic nitrogen in contrasting agricultural ecosystems. Soil Biology and Biochemistry, 2005, 37: 1560-1563 |
[35] | Jiang L, Wan S, Pang Z, et al. Abiotic and biotic controls of soil dissolved organic nitrogen along a precipita-tion gradient on the Tibetan Plateau. Plant and Soil, 2021, 459: 65-78 |
[36] | Quan Z, Lu C, Shi Y, et al. Manure increase the lea-ching risk of soil extractable organic nitrogen in intensively irrigated greenhouse vegetable cropping systems. Acta Agriculturae Scandinavica, Section B: Soil and Plant Science, 2014, 65: 199-207 |
[37] | Quan Z, Huang B, Shi Y, et al. Nitrogen accumulation and loss in a high-input greenhouse vegetable cropping system elevated by application of manures. Horscience, 2015, 50: 1688-1693 |
[38] | 赵满兴, 周建斌, 陈竹君, 等. 有机肥中可溶性有机碳、氮含量及其特性. 生态学报, 2007, 27(1): 397-403 |
[39] | Mengel K, Schnerider B, Kosegarten H. Nitrogen compounds extracted by electroultra-filtration (EUF) or CaCl2 solution and their relationships to nitrogen minera-lization in soils. Journal of Plant Nutrition and Soil Science, 1999, 162: 139-148 |
[40] | 卢红玲, 李世清, 金发会, 等. 可溶性有机氮在评价土壤供氮能力中的作用与效果. 中国农业科学, 2008, 41(4): 1073-1082 |
[41] | 杨绒, 严德翼, 周建斌, 等. 黄土区不同类型土壤可溶性有机氮的含量及特性. 生态学报, 2007, 27(4): 1397-1403 |
[42] | Perakis SS, Hedin LO. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, sou-thern Chile. Ecology, 2001, 82: 2245-2260 |
[43] | Kranabetter J, Dawson C, Dunn D. Indices of dissolved organic nitrogen, ammonium and nitrate across productivity gradients of boreal forests. Soil Biology and Biochemistry, 2007, 39: 3147-3158 |
[44] | Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biology and Biochemistry, 2002, 34: 209-219 |
[45] | Giai C, Boerner REJ. Effects of ecological restoration on microbial activity, microbial functional diversity and soil organic matter in mixed-oak forests of southern Ohio, USA. Applied Soil Ecology, 2007, 35: 281-290 |
[46] | Wang X, Ye J, Perez PG, et al. The impact of organic farming on the soluble organic nitrogen pool in horticultural soil under open field and greenhouse conditions: A case study. Soil Science and Plant Nutrition, 2013, 59: 237-248 |
[47] | Qiu S, Ju X, Ingwersen J, et al. Changes in soil carbon and nitrogen pools after shifting from conventional cereal to greenhouse vegetable production. Soil and Tillage Research, 2010, 107: 80-87 |
[48] | Lei B, Fan M, Chen Q, et al. Conversion of wheat-maize to vegetable cropping systems changes soil organic matter characteristics. Soil Science Society of America Journal, 2010, 74: 1320-1326 |
[49] | 高雪梅, 黄沐亮, 阙辰月, 等. 林地生态系统土壤可溶性有机氮库及其生态功能研究进展. 福建农业学报, 2011, 26(6): 1135-1141 |
[50] | 江玉梅, 陈成龙, 徐志红, 等. 退化红壤区人工林土壤的可溶性有机物、微生物生物量和酶活性. 应用生态学报, 2010, 21(9): 2273-2278 |
[51] | 庄舜尧, 王明光, 胡正义. 高山森林土壤中有机氮的N K-edge XANES分析. 土壤学报, 2007, 44(2): 368-372 |
[52] | 杨静, 聂三安, 杨文浩, 等. 不同施肥水稻土可溶性有机氮组分差异及影响因素. 土壤学报, 2018, 55(4): 955-966 |
[53] | Nie S, Zhao L, Lei X, et al. Dissolved organic nitrogen distribution in differently fertilized paddy soil profiles: Implications for its potential loss. Agriculture, Ecosystems and Environment, 2018, 262: 58-64 |
[54] | Yu Z, Zhang Q, Kraus TEC, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils. Biogeochemistry, 2002, 61: 173-198 |
[55] | Farrell M, Hill PW, Farrar J, et al. Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient. Soil Biology and Biochemistry, 2011, 43: 835-844 |
[56] | Qualls RG, Bridgham SD. Mineralization rate of 14C-labelled dissolved organic matter from leaf litter in soils of a weathering chronosequence. Soil Biology and Biochemistry, 2005, 37: 905-916 |
[57] | Quan Z, Huang B, Lu C, et al. Formation of extractable organic nitrogen in an agricultural soil: A 15N labeling study. Soil Biology and Biochemistry, 2018, 118: 161-165 |
[58] | Lusk MG, Toor GS, Inglett PW. Characterization of dissolved organic nitrogen in leachate from a newly established and fertilized turfgrass. Water Research, 2018, 131: 52-61 |
[59] | Benner R, Pakulski JD, McCarthy MD, et al. Chemical characteristics of dissolved organic matter in ocean. Science, 1999, 255: 1561-1564 |
[60] | 刘艳, 周国逸, 刘菊秀. 陆地生态系统可溶性有机氮研究进展. 生态学杂志, 2005, 24(5): 573-577 |
[61] | Raber BK, Gel-Knabner I, Stein C, et al. Partitioning of polycyclic aromatic hydrocarbons to dissolved organic matter from different soils. Chemosphere, 1998, 36: 79-97 |
[62] | Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environment International, 1999, 25: 83-95 |
[63] | Bremner JM. Nitrogen compounds// Mclaren AD, Peterson GH. Soil Biochemistry. New York: Marcel Dekker Inc., 1967: 26-30 |
[64] | Warren CR. Organic N molecules in the soil solution: What is known, what is unknown and the path forwards. Plant and Soil, 2014, 375: 1-19 |
[65] | 李辉, 张晋京. 土壤中有机氮形态及测定方法的研究进展. 中国农学通报, 2014, 30(21): 24-28 |
[66] | Barak P, Molina JAE, Hadas A, et al. Mineralization of amino acids and evidence of direct assimilation of orga-nic nitrogen. Soil Science Society of America Journal, 1990, 54: 769-774 |
[67] | Hart SC, Naeon GE, Myrold DD, et al. Dynamics of gross nitrogen transformations in an old-growth forest: The carbon connection. Ecology, 1994, 75: 880-891 |
[68] | Näsholm T, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen. Nature, 1998, 392: 227-229 |
[69] | Freixes S, Thibaud MC, Tardieu F, et al. Root elongation and branching is related to local hexose concentration in Arabidopsis thaliana seedlings. Plant, Cell and Environment, 2002, 25: 1357-1366 |
[70] | Henry HAL, Jefferies RL. Interactions in the uptake of amino acids, ammonium and nitrate ions in the Arctic salt-marsh grass, Puccinellia phryganodes. Plant, Cell and Environment, 2003, 26: 419-428 |
[71] | Jones DL, Healey JR, Willett VB, et al. Dissolved organic nitrogen uptake by plants: An important N uptake pathway? Soil Biology and Biochemistry, 2005, 37: 413-423 |
[72] | Kielland K. Amino acid absorption by arctic plants: Implication for plant nutrition and nitrogen cycling. Eco-logy, 1994, 75: 2373-2383 |
[73] | Owen AG, Jones DL. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biology and Biochemistry, 2001, 33: 651-657 |
[74] | Näsholm T, Persson J. Plant acquisition of organic nitrogen in boreal forests. Physiologia Plantarum, 2001, 111: 419-426 |
[75] | Christou M, Avramidesa EJ, Jones DL. Dissolved orga-nic nitrogen dynamics in a Mediterranean vineyard soil. Soil Biology and Biochemistry, 2006, 38: 2265-2277 |
[76] | Groot JJR, Houba VJG. A comparison of different indices for nitrogen mineralization. Biology and Fertility of Soils, 1995, 19: 1-9 |
[77] | Schimel JP, Chapin IIIFS. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: Plants compete well for amino acid N. Ecology, 1996, 77: 2142-2147 |
[78] | Lu H, Li S, Jin F, et al. Effects of soluble organic N on evaluating soil N supplying capacity. Agricultural Sciences in China, 2008, 7: 860-870 |
[79] | 兰忠明, 吴一群, 林诚, 等. 不同生态系统土壤可溶性有机氮(SON)的研究. 安徽农业科学, 2010, 38(5): 2479-2481 |
[80] | Zhu F, Dai L, Hobbie EA, et al. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of Northeast China. Frontiers in Plant Science, 2019, 10: 799, doi: 10.3389/fpls.2019.00799 |
[81] | Chapin FS, Matson P, Mooney H. Principles of Terrestrial Ecosystem Ecology. New York: Springer, 2002: 176-196 |
[82] | Guggenberger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin degradation products in two coniferous forests. Soil Biology and Biochemistry, 1994, 26: 19-27 |
[83] | Kalbitz K, Solinger S, Park JH, et al. Contrls on the dynamics of dissolved organic matter soils: A review. Soil Science, 2000, 165: 277-304 |
[84] | Zhou W, Sha L, Schaefe DA, et al. Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rainforest. Soil Biology and Biochemistry, 2015, 81: 255-258 |
[85] | Morier I, Schleppi P, Siegwolf R, et al. 15N immobilization in forest soil: A sterilization experiment coupled with N-15 CPMAS NMR spectroscopy. European Journal of Soil Science, 2008, 59: 467-475 |
[86] | Xing S, Zhou B, Zhang L, et al. Evaluating the mechanisms of the impacts of key factors on soil soluble orga-nic nitrogen concentrations in subtropical mountain ecosystems. Science of the Total Environment, 2019, 651: 2187-2196 |
[87] | Holst J, Brackin R, Robinson N, et al. Soluble inorga-nic and organic nitrogen in two Australian soils under sugarcane cultivation. Agriculture, Ecosystems and Environment, 2012, 155: 16-26 |
[88] | 周建斌, 陈竹君, 郑险峰. 土壤可溶性有机氮及其在氮素供应及转化中的作用. 土壤通报, 2005, 36(2): 244-248 |
[89] | Wang L, Zheng X, Tian F, et al. Soluble organic nitrogen cycling in soils after application of chemical/organic amendments and groundwater pollution implications. Journal of Contaminant Hydrology, 2018, 217: 43-51 |
[90] | Siemens J, Kaupenjohann M. Contribution of dissolved organic nitrogen to N leaching from four German agricultural soils. Plant Nutrient and Soil Science, 2002, 165: 675-681 |
[91] | Bergström L, Kirchmann H. Leaching and crop uptake of nitrogen from nitrogen-15-labeled green manures and ammonium nitrate. Journal of Environmental Quality, 2004, 33: 1786-1792 |
[92] | Park JH, Matzner E. Detrital control on the release of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) from the forest floor under chronic N deposition. Environmental Pollution, 2006, 143: 178-185 |
[93] | Burton J, Chen C, Xu Z, et al. Soluble organic nitrogen pools in adjacent native and plantation forests of subtropical Australia. Soil Biology and Biochemistry, 2007, 39: 2723-2734 |
[94] | Hagedorn F, Bucher JB, Schleppi P. Contrasting dynamics of dissolved inorganic and organic nitrogen in soil and surface waters of forested catchments with Gleysols. Geoderma, 2001, 100: 173-192 |
[95] | Zhou J, Xi J, Chen Z, et al. Leaching and transformation of nitrogen fertilizers in soil after application of N with irrigation: A soil column method. Pedosphere, 2006, 16: 245-252 |
[96] | Darwish T, Atallah T, Hajhasan S, et al. Management of nitrogen by fertigation of potato in Lebanon. Nutrient Cycling in Agroecosystems, 2003, 67: 1-11 |
[97] | 习金根, 周建斌. 不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究. 植物营养与肥料学报, 2003, 9(3): 271-275 |
[98] | Mack UD, Feger KH, Gong Y, et al. Soil water ba-lance and nitrate leaching in winter wheat-summer maize doublecropping systems with different irrigation and N fertilization in the North China Plain. Journal of Plant Nutrition and Soil Science, 2005, 168: 454-460 |
[99] | Barraclough D, Gibbs P, Macdonald AJ. A new soil nitrogen and carbon cycle. Proceedings of the 16th World Congress of Soil Science, Montpellier, France, 1998: 20-26 |
[100] | Dail DB, Davidson EA, Chorover J. Rapid abiotic transformation of nitrate in an acid forest soil. Biogeochemistry, 2001, 54: 131-146 |
[101] | Davidson EA, Chorover J, Dail DB. A mechanism of abiotic immobilization of nitrate in forest ecosystems: The ferrous wheel hypothesis. Global Change Biology, 2003, 9: 228-236 |
[102] | Matus F, Stock S, Eschenbach W, et al. Ferrous wheel hypothesis: Abiotic nitrate incorporation into dissolved organic matter. Geochimica et Cosmochimica Acta, 2019, 245: 514-524 |
[103] | Colman BP, Schimel FJP. Abiotic nitrate incorporation in soil: Is it real? Biogeochemistry, 2007, 84: 161-169 |
[104] | Colman B, Fierer N, Schimel J. Abiotic nitrate incorporation, anaerobic microsites, and the ferrous wheel. Biogeochemistry, 2008, 91: 223-227 |
[105] | Schmidt BHM, Matzner E. Abiotic reaction of nitrite with dissolved organic carbon? Testing the ferrous wheel hypothesis. Biogeochemistry, 2009, 93: 291-296 |
[106] | Davidson EA, Chorover J, Dail DB. Iron interference in the quantification of nitrate in soil extracts and its effect on hypothesized abiotic immobilization of nitrate. Biogeochemistry, 2008, 90: 65-73 |
[107] | Smith SJ. Soluble organic nitrogen losses associated with recovery of mineralized nitrogen. Soil Science Society of America Journal, 1987, 51: 1191-1194 |
[108] | Smolander A, Loponen J, Suominen K, et al. Organic matter characteristics and C and N transformations in the humus layer under two tree species, Betula pendula and Picea abies. Soil Biology and Biochemistry, 2005, 37: 1309-1318 |
[109] | Mariano E, Jones DL, Hill PW, et al. Mineralisation and sorption of dissolved organic nitrogen compounds in litter and soil from sugarcane fields. Soil Biology and Biochemistry, 2016, 103: 522-532 |
[110] | Stanford G, Smith SJ. Nitrogen mineralization potentials of soils. Soil Science Society of America Journal, 1972, 3: 465-472 |
[111] | 卢红玲, 李世清, 金发会, 等. 对间隙淋洗长期通气培养条件下黄土高原土壤供氮能力的评价. 植物营养与肥料学报, 2008, 14(6): 1083-1091 |
[112] | Van KC, Clough T, Van GJW. Dissolved organic nitrogen: An overlooked pathway of nitrogen loss from agricultural systems? Journal of Environmental Quality, 2009, 38: 393-401 |
[113] | Wu H, Song X, Zhao X, et al. Accumulation of nitrate and dissolved organic nitrogen at depth in a red soil cri-tical zone. Geoderma, 2019, 337: 1175-1185 |
[114] | Chen CR, Xu ZH. Analysis and behavior of soluble organic nitrogen in forest soils. Journal of Soils and Sediments, 2008, 8: 363-378 |
[115] | Scherer HW, Werner W, Rossbach J. Effects of pretreatment of soil samples on N mineralization in incubation experiments. Biology and Fertility of Soils, 1992, 14: l35-l39 |
[116] | Lilienfein J, Qualls RG, Uselman SM, et al. Adsorption of dissolved organic carbon and nitrogen in soils of a weathering chronosequence. Soil Science Soiety of America Journal, 2004, 68: 292-305 |
[117] | Lehmann J, Lilienfein J, Rebel K, et al. Subsoil retention of organic and inorganic nitrogen in a Brazilian savanna Oxisol. Soil Use and Management, 2004, 20: 163-172 |
[118] | Lajtha K, Crow S, Yano Y, et al. Detrital controls on soil solution N and dissolved organic matter in soils: A field experiment. Biogeochemistry, 2005, 76: 261-281 |
[119] | Kaiser K, Guggenberger G, Haumaier L, et al. Dissolved organic matter sorption on subsoils and minerals studied by 13C-NMR and DRIFT spectroscopy. European Journal of Soil Science, l997, 48: 301-310 |
[120] | Kaiser K, Guggenbeger G, Zech W. Sorption of DOM and DOM fractions to forest soils. Geoderma, l996, 74: 28l-303 |
[121] | Kaiser K, Zech W. Sorption of dissolved organic nitrogen by acid subsoil horizons and individual mineral phases. European Journal of Soil Science, 2000, 51: 403-411 |
[122] | Rosenqvist L, Kleja DB, Johansson MB. Concentrations and fluxes of dissolved organic carbon and nitrogen in a Picea abies chronosequence on former arable land in Sweden. Forest Ecology and Management, 2010, 259: 275-285 |
[123] | Hawkins JMB, Scholefield D, Jarvis SC. Organic N losses from a poorly drained grassland soil. Proceedings of the Scottish Agricultural College Diffusee Pollution and Agriculture Conference Ⅱ, Scotland, 1997: 246-248 |
[124] | 刘世全, 曹红霞, 杨慧, 等. 水氮供应与番茄产量和生长性状的关联性分析. 中国农业科学, 2014, 47(22): 4445-4452 |
[125] | 汤丽玲, 陈清, 张宏彦, 等. 不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响. 植物营养与肥料学报, 2002, 8(3): 282-287 |
[126] | 王红霞, 周建斌, 雷张玲, 等. 有机肥中不同形态氮及可溶性有机碳在土壤中淋溶特性研究. 农业环境科学学报, 2008, 27(4): 1364-1370 |
[127] | Zhou J, Green M, Shaviv A. Mineralization of organic N originating in treated effluent used for irrigation. Nutrient Cycling in Agroecosystems, 2003, 67: 205-213 |
[128] | 刘忠翰, 彭江燕. 污水土地处理中水田氮素的迁移特征. 土壤学报, 2000, 37(3): 428-432 |
[129] | Bergström L, Kirchmann H. Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertilizer. Journal of Environmental Quality, 1999, 28: 1283-1290 |
[130] | Long G, Jiang Y, Sun B. Seasonal and inter-annual variation of leaching of dissolved organic carbon and nitrogen under long-term manure application in an acidic clay soil in subtropical China. Soil and Tillage Research, 2015, 146: 270-278 |
[1] | 纪永康, 马楠, 张慧, 李翠环, 马元丹, 武启骞, 李彦. 降水季节性分配对亚热带森林土壤氮矿化的影响 [J]. 应用生态学报, 2024, 35(1): 186-194. |
[2] | 许雄钞, 张前前, 滕秋梅, 赵明水, 李永春. 毛竹和次生阔叶林优势树种根际效应对土壤有机碳矿化的影响 [J]. 应用生态学报, 2023, 34(9): 2374-2382. |
[3] | 李志丽, 王红梅, 赵亚楠, 周玉蓉. 荒漠草原灌丛引入过程中土壤氮矿化的季节动态及其影响因子 [J]. 应用生态学报, 2023, 34(8): 2161-2170. |
[4] | 薛志婧, 屈婷婷, 刘春晖, 刘小槺, 王蕊, 王宁, 周正朝, 董治宝. 培养条件下枯落物分解过程中微生物残体对土壤有机碳形成的贡献 [J]. 应用生态学报, 2023, 34(7): 1845-1852. |
[5] | 温丽联, 宋金明, 李学刚, 马骏, 戴佳佳, 袁华茂, 段丽琴, 王启栋. 氟喹诺酮类合成药物的生物地球化学行为及生态环境效应 [J]. 应用生态学报, 2023, 34(6): 1680-1692. |
[6] | 高玮, 李子双, 谢建治, 周晓琳, 杜梦扬, 王学霞, 陈延华, 曹兵. 基施控释掺混肥对夏玉米生长期活性氮损失和碳氮足迹的影响 [J]. 应用生态学报, 2023, 34(12): 3322-3332. |
[7] | 项剑, 孙禧, 王成, 扎西央宗, 史文竹, 王艮梅, 张焕朝. 生物炭对滨海盐碱土氮素转化和N2O排放的影响 [J]. 应用生态学报, 2023, 34(11): 2969-2977. |
[8] | 张佳彭, 杨继松, 刘玥, 宁凯, 于君宝, 王志康, 王雪宏. 电子受体添加对黄河口湿地土壤厌氧碳矿化温度敏感性的影响 [J]. 应用生态学报, 2023, 34(11): 2985-2992. |
[9] | 陈天, 程瑞梅, 沈雅飞, 肖文发, 王丽君, 孙鹏飞, 张萌, 李璟. 氮添加对三峡库区马尾松人工林土壤团聚体有机氮组分和氮矿化的影响 [J]. 应用生态学报, 2023, 34(10): 2601-2609. |
[10] | 王斌, 王汝振, 张英, 顾柏滔, 李甜, 张玉革, 姜勇. 草甸草原土壤与植物系统自然丰度氮稳定同位素的年际变化及其指示作用 [J]. 应用生态学报, 2022, 33(8): 2161-2170. |
[11] | 陈一帆, 吕雪艳, 于志国, 孙媛媛, 吴吉春. 黏土矿物对全氟辛酸在饱和多孔介质中运移行为的影响 [J]. 应用生态学报, 2022, 33(12): 3363-3368. |
[12] | 陈甜, 元方慧, 张琳梅, 胡亚林. 不同化学性质叶凋落物添加对土壤有机碳矿化及激发效应的影响 [J]. 应用生态学报, 2022, 33(10): 2602-2610. |
[13] | 李平, 魏玮, 郎漫. 水分对林地和草地土壤氮初级转化速率的影响 [J]. 应用生态学报, 2022, 33(1): 59-66. |
[14] | 王岩, 刁华杰, 董宽虎, 王常慧, 赵威. 降水变化与氮添加对晋北盐碱化草地土壤净氮矿化的影响 [J]. 应用生态学报, 2021, 32(7): 2389-2396. |
[15] | 武威, 柴文云, 范珍, 李金虎, 鲁璐, 徐湛禹, 王振. 三级串联垂直潜流人工湿地的脱氮性能及微生物学特征 [J]. 应用生态学报, 2021, 32(7): 2578-2588. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||