[1] Miller K, Aegerter BJ, Clark NE, et al. Relationship between soil properties and nitrogen mineralization in undisturbed soil cores from California agroecosystems. Communications in Soil Science and Plant Analysis, 2019, 50: 77-92 [2] Peñuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4: 2934 [3] Lebauer DS, Treseder KK. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89: 371-379 [4] Baldos AP, Corre MD, Veldkamp E. Response of N cycling to nutrient inputs in forest soils across a 1000-3000 m elevation gradient in the Ecuadorian Andes. Ecology, 2015, 96: 749-761 [5] Gao W, Kou L, Zhang J, et al. Ammonium fertilization causes a decoupling of ammonium cycling in a boreal forest. Soil Biology and Biochemistry, 2016, 101: 114-123 [6] Blaško R, Hogberg P, Bach LH, et al. Relations among soil microbial community composition, nitrogen turnover, and tree growth in N-loaded and previously N-loaded boreal spruce forest. Forest Ecology and Management, 2013, 302: 319-328 [7] 蔡瑜如, 傅华, 陆丽芳, 等. 陆地生态系统植物吸收有机氮的研究进展. 草业科学, 2014, 31(7): 1357-1366 [8] Bremner JM. Methods of Soil Analysis. Madison, USA: American Society of Agronomy, 1965, 9: 1238-1255 [9] 吴汉卿, 张玉龙, 张玉玲, 等. 土壤有机氮组分研究进展. 土壤通报, 2018, 49(5): 1240-1246 [10] 李世清, 李生秀, 邵明安, 等. 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响. 中国农业科学, 2004, 37(6): 859-864 [11] Huang HP, Hu XJ, Tian JP, et al. Rapid detection of the reducing sugar and amino acid nitrogen contents of Daqu based on hyperspectral imaging. Journal of Food Composition and Analysis, 2021, 101: 103970 [12] Tian J, Wei K, Condron LM, et al. Effects of elevated nitrogen and precipitation on soil organic nitrogen fractions and nitrogen-mineralizing enzymes in semi-arid steppe and abandoned cropland. Plant and Soil, 2017, 417: 217-229 [13] Six J, Elliott ET, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biology and Biochemistry, 2000, 32: 2099-2103 [14] Cao RR, Chen LC, Hou XC, et al. Nitrogen addition reduced carbon mineralization of aggregates in forest soils but enhanced in paddy soils in South China. Ecological Processes, 2021, 10: 45 [15] 凌小莉, 史宝库, 崔海莹, 等. 氮磷添加对松嫩草地土壤团聚体结构及其碳含量的影响. 中国草地学报, 2021, 43(2): 54-63 [16] 周学雅, 陈志杰, 耿世聪, 等. 氮沉降对长白山森林土壤团聚体内碳、氮含量的影响. 应用生态学报, 2019, 30(5): 1543-1552 [17] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen depo-sition over China. Nature, 2013, 494: 459-462 [18] 郑丹楠, 王雪松, 谢绍东, 等. 2010年中国大气氮沉降特征分析. 中国环境科学, 2014, 34(5): 1089-1097 [19] Bach EM, Hofmockel KS. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biology and Biochemistry, 2014, 69: 54-62 [20] 王方超, 邹丽群, 唐静, 等. 氮沉降对杉木和枫香土壤氮磷转化及碳矿化的影响. 生态学报, 2016, 36(11): 3226-3234 [21] Zhang QC, Wang GH, Xie WX. Soil organic N forms and N supply as affected by fertilization under intensive rice cropping system. Pedosphere, 2006, 16: 345-353 [22] Lv H, He H, Zhao J, et al. Dynamics of fertilizer-derived organic nitrogen fractions in an arable soil during a growing season. Plant and Soil, 2013, 373: 595-607 [23] Atanasova E. Effect of nitrogen sources on the nitrogenous forms and accumulation of amino acid in head cabbage. Plant, Soil and Environment, 2008, 54: 66-71 [24] 王丽君, 程瑞梅, 肖文发, 等. 氮添加对三峡库区马尾松-栓皮栎混交林土壤微生物生物量和酶活性的影响. 应用生态学报, 2022, 33(1): 42-50 [25] 陈天, 程瑞梅, 王丽君, 等. 氮添加对马尾松人工林土壤团聚体氮矿化及土壤酶活性的影响. 生态学报, 2023, 43(16): 6528-6538 [26] 丛耀辉, 张玉玲, 张玉龙, 等. 黑土区水稻土有机氮组分及其对可矿化氮的贡献. 土壤学报, 2016, 53(2): 457- 467 [27] 曹杨, 沈育伊, 陈运霜, 等. 生物炭施用5 a后对桂北桉树人工林土壤有机氮组分和活性氮的影响. 环境科学, 2023, 44, doi:10.13227/j.hjkx.202211155 [28] 石丽红, 唐海明, 孙耿, 等. 长期不同施肥模式对双季稻田土壤酸解有机氮组分的影响. 应用生态学报, 2022, 33(12): 3345-3351 [29] Nannipieri P, Eldor P. The chemical and functional characterization of soil and its biotic components. Soil Biology and Biochemistry, 2009, 41: 2357-2369 [30] 董姝含, 贺章咪, 王婉琦, 等. 土壤有机氮组分的年际变化及其对秸秆还田的响应. 应用生态学报, 2022, 33(11): 2963-2970 [31] 王海珍, 陆宇明, 张磊, 等. 采伐剩余物不同处理方式对杉木幼林土壤有机氮组分的影响. 应用生态学报, 2022, 33(5): 1199-1206 [32] 李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响. 生态学报, 2003, 23(9): 1891-1900 [33] Ni YY, Jian Z, Zeng L, et al. Climate, soil nutrients, and stand characteristics jointly determine large-scale patterns of biomass growth rates and allocation in Pinus massoniana plantations. Forest Ecology and Management, 2022, 504: 119839 [34] Xiao YL, Tu LH, Chen G, et al. Soil-nitrogen net mine-ralization increased after nearly six years of continuous nitrogen additions in a subtropical bamboo ecosystem. Journal of Forestry Research, 2015, 26: 949-956 [35] 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展. 植物生态学报, 2020, 44(6): 583-597 [36] 李秋嘉, 薛志婧, 周正朝. 宁南山区植被恢复对土壤团聚体养分特征及微生物特性的影响. 应用生态学报, 2019, 30(1): 137-145 [37] Polláková N, Šimanský VV, Kravka M. The influence of soil organic matter fractions on aggregates stabilization in agricultural and forest soils of selected Slovak and Czech hilly lands. Journal of Soils and Sediments, 2017, 18: 2790-2800 [38] Ferro ND, Piccoli I, Berti A, et al. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agriculture, Ecosystems & Environment, 2020, 300: 106967 [39] 吕思扬, 宋思意, 黎蕴洁, 等. 氮添加和凋落物增减对华西雨屏区常绿阔叶林土壤团聚体及其碳氮的影响. 水土保持学报, 2022, 36(1): 277-287 [40] Rice CW, Tiedje JM. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorga-nisms. Soil Biology and Biochemistry, 1989, 21: 597-602 [41] 刘君政, 王鹏, 肖汉玉, 等. 中国陆地生态系统土壤氮矿化速率和硝化速率及影响因素——基于文献数据的统计分析. 生态学报, 2020, 40(12): 4207-4218 [42] Mehnaz KR, Keitel C, Dijkstra FA. Effects of carbon and phosphorus addition on microbial respiration, N2O emission, and gross nitrogen mineralization in a phosphorus-limited grassland soil. Biology and Fertility of Soils, 2018, 54: 481-493 [43] 沈善敏. 无机氮对土壤氮矿化与固定的影响——兼论土壤氮的“激发效应”. 土壤学报, 1986, 23(1): 10-16 [44] Fang YT, Zhu WX, Gundersen P, et al. Large loss of dissolved organic nitrogen from nitrogen-saturated forests in subtropical China. Ecosystems, 2009, 12: 33-45 [45] Accoe F, Boeckx P, Busschaert J, et al. Gross N transformation rates and net N mineralisation rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biology and Bioche-mistry, 2004, 36: 2075-2087 [46] Yudina AV, Klyueva VV, Romanenko KA, et al. Micro-within macro: How micro-aggregation shapes the soil pore space and water-stability. Geoderma, 2022, 415: 115771 [47] Li ZJ, Reichel R, Li ZM, et al. Effects of snow absence on available N pools and enzyme activities within soil aggregates in a spruce forest on the eastern Tibetan Pla-teau. Soil Ecology Letters, 2021, 4: 376-382 |