[1] Burney JA, Davis SJ, Lobell DB. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107: 12052-12057 [2] Sun HJ, Zhang HL, Powlson D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine. Field Crops Research, 2015, 173: 1-7 [3] 张卫峰, 马林, 黄高强, 等. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46(15): 3161-3171 [4] Cantarell H, Mattos D, Quaggio JA, et al. Fruit yield of Valencia sweet orange fertilized with different N sources and the loss of applied N. Nutrient Cycling in Agroecosystems, 2003, 67: 215-223 [5] Pietzner B, Rücknagel J, Koblenz B, et al. Impact of slurry strip-till and surface slurry incorporation on NH3 and N2O emissions on different plot trials in Central Germany. Soil and Tillage Research, 2017, 169: 54-64 [6] Erisman JW, Bleeker A, Galloway J, et al. Reduced nitrogen in ecology and the environment. Environmental Pollution, 2007, 150: 140-149 [7] Zaman M, Blennerhassett JD. Effects of the different rates of urease and nitrification inhibitors on gaseous emissions of ammonia and nitrous oxide, nitrate leaching and pasture production from urine patches in an intensive grazed pasture system. Agriculture, Ecosystems and Environment, 2009, 136: 236-246 [8] 油伦成, 李东坡, 崔磊, 等. 不同硝化抑制剂组合对铵态氮在黑土和褐土中转化的影响. 植物营养与肥料学报, 2019, 25(12): 2113-2121 [9] 万伟帆, 李斐, 红梅, 等. 氮肥用量和脲酶抑制剂对滴灌马铃薯田氧化亚氮排放和氨挥发的影响. 植物营养与肥料学报, 2018, 24(3): 693-702 [10] 张文学, 杨成春, 王少先, 等. 脲酶抑制剂与硝化抑制剂对稻田土壤氮素转化的影响. 中国水稻科学, 2017, 31(4): 417-424 [11] 郑蕾, 王学东, 郭李萍, 等. 施肥对露地菜地氨挥发和氧化亚氮排放的影响. 应用生态学报, 2018, 29(12): 4063-4070 [12] Byrnes B, Guster R, Amberger A. Greenhouse study on the effects of the urease inhibitors phenyl phosphorodia- mide and N-(normal-butyl) thiophosphoric triamide on the efficiency of urea applied to flooded rice. Journal of Plant Nutrition and Soil Science, 1989, 152: 67-72 [13] 周玉玲, 侯朋福, 李刚华, 等. 两种土壤增效剂对稻田氨挥发排放的影响. 环境科学, 2019, 40(8): 3746-3752 [14] 宋涛, 尹俊慧, 胡兆平, 等. 脲酶/硝化抑制剂减少农田土壤氮素损失的作用特征. 农业资源与环境学报, 2021, 38(4): 585-597 [15] He TH, Liu DY, Yuan JJ, et al. Effects of application of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively managed wheat field. Science of the Total Environment, 2018, 628-629: 121-130 [16] Wang C, Liu JY, Shen JL, et al. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agriculture, Ecosystems and Environment, 2018, 262: 83-96 [17] Cayuela ML, van Zwieten L, Singh BP, et al. Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems and Environment, 2014, 191: 5-16 [18] Nils B, Michael S, Luz CM, et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: A meta-analysis. Science of the Total Environment, 2019, 651: 2354-2364 [19] He TH, Liu DY, Yuan JJ, et al. A two years study on the combined effects of biochar and inhibitors on ammonia volatilization in an intensively managed rice field. Agriculture, Ecosystems and Environment, 2018, 264: 44-53 [20] Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63: 4704-4712 [21] Francis CA, Roberts KJ, Beman JM, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 14683-14688 [22] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventory[EB/OL]. (2006-04) [2021-08-19]. https://www.ipcc.ch/library/ [23] 张军, 周丹丹, 吴敏, 等. 生物炭对土壤硝化反硝化微生物群落的影响研究进展. 应用与环境生物学报, 2018, 24(5): 993-999 [24] 刘杏认, 赵光昕, 张晴雯, 等. 生物炭对华北农田土壤N2O通量及相关功能基因丰度的影响. 环境科学, 2018, 39(8): 3816-3825 [25] Ball PN, MacKenzie MD, DeLuca TH, et al. Wildfire and charcoal enhance nitrification and ammonium-oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 2010, 39: 1243-1253 [26] 陈效民, 吴华山, 孙静红. 太湖地区农田土壤中铵态氮和硝态氮的时空变异. 环境科学, 2006, 27(6): 1217-1222 [27] 李学红, 李东坡, 武志杰, 等. 脲酶/硝化抑制剂在黑土和褐土中对尿素氮转化的调控效果. 应用生态学报, 2021, 32(4): 1352-1360 [28] 刘玉学, 吕豪豪, 石岩, 等. 生物质炭对土壤养分淋溶的影响及潜在机理研究进展. 应用生态学报, 2015, 26(1): 304-310 [29] 刘钰莹. 氮肥增效剂与生物炭配施对水稻土氮素转化及利用效率的影响. 硕士论文. 杭州: 浙江大学, 2020 [30] Gillam KM, Zebarth BJ, Burton DL. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Canadian Journal of Soil Science, 2008, 88: 133-143 [31] Zhao ZC, Wu D, Bol R, et al. Nitrification inhibitor's effect on mitigating N2O emissions was weakened by urease inhibitor in calcareous soils. Atmospheric Environment, 2017, 166: 142-150 [32] 杨柳青, 季加敏, 巨晓棠. 硝化/脲酶抑制剂对石灰性潮土N2O减排效果及氮素转化的比较. 农业环境科学学报, 2017, 36(3): 605-612 [33] Treweek G, Di HJ, Cameron KC, et al. Effectiveness of the nitrification inhibitor dicyandiamide and biochar to reduce nitrous oxide emissions. New Zealand Journal of Agricultural Research, 2016, 59: 165-173 [34] 陈晨, 王春隆, 周璐瑶, 等. 施用生物炭和硝化抑制剂对菜地N2O排放和蔬菜产量的影响. 南京农业大学学报, 2017, 40(2): 287-294 [35] Cantarella H, Otto R, Soares JR, et al. Agronomic efficiency of NBPT as a urease inhibitor: A review. Journal of Advanced Research, 2018, 13: 19-27 [36] 赵进, 赵旭, 王慎强, 等. 长期秸秆黑炭施加对石灰性潮土肥力、固碳及氨挥发的影响. 应用生态学报, 2018, 29(1): 176-184 [37] 杜世宇, 薛飞, 吴汉卿, 等. 水氮耦合对设施土壤温室气体排放的影响. 农业环境科学学报, 2019, 38(2): 476-484 [38] 廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018, 32(9): 1821-1830 [39] 祁乐, 高明, 郭晓敏, 等. 生物炭施用量对紫色水稻土温室气体排放的影响. 环境科学, 2018, 39(5): 2351-2359 |