[1] |
Yamamoto T, Nakamura A, Iwai H, et al. Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. Journal of Plant Research, 2012, 125: 771-779
|
[2] |
巨晓棠, 谷保静. 我国农田氮肥施用现状、问题及趋势. 植物营养与肥料学报, 2014, 20(4): 783-795
|
[3] |
Ladha JK, Reddy PM. Nitrogen fixation in rice systems: State of knowledge and future prospects. Plant and Soil, 2003, 252: 151-167
|
[4] |
Guntzer F, Keller C, Meunier J. Benefits of plant silicon for crops: A review. Agronomy for Sustainable Development, 2012, 32: 201-213
|
[5] |
Coskun D, Deshmukh R, Sonah H, et al. The controversies of silicon’s role in plant biology. New Phytologist, 2019, 221: 67-85
|
[6] |
张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5): 915-924
|
[7] |
Tayefeh M, Sadeghi SM, Noorhosseini SA, et al. Environmental impact of rice production based on nitrogen fertilizer use. Environmental Science and Pollution Research, 2018, 25: 15885-15895
|
[8] |
Tsujimoto Y, Muranaka S, Saito K, et al. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-gro-wing environments across Sub-Saharan Africa. Field Crops Research, 2014, 155: 1-9
|
[9] |
Novak JM, Busscher WJ, Laird DL, et al. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 2009, 174: 105-112
|
[10] |
张继宁, 周胜, 李广南, 等. 秸秆生物炭对水稻生长及滩涂土壤化学性质的影响. 农业资源与环境学报, 2018, 35(6): 492-499
|
[11] |
Zheng H, Wang ZY, Deng X, et al. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 2013, 206: 32-39
|
[12] |
Fiorentino N, Sánchez-Monedero MA, Lehmann J, et al. Interactive priming of soil N transformations from combining biochar and urea inputs: A 15N isotope tracer study. Soil Biology and Biochemistry, 2019, 131: 166-175
|
[13] |
Clough TJ, Condron LM, Kammann C, et al. A review of biochar and soil nitrogen dynamics. Agronomy, 2013, 3: 275-293
|
[14] |
Liang J, Tang S, Gong J, et al. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil. Journal of Hazardous Materials, 2020, 385: 121533
|
[15] |
Liu XY, Li LQ, Bian RJ, et al. Effect of biochar amendment on soil-silicon availability and rice uptake. Journal of Plant Nutrition and Soil Science, 2014, 177: 91-96
|
[16] |
Wang YF, Xiao X, Zhang K, et al. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Environmental Pollution, 2019, 248: 823-833
|
[17] |
Li ZM, Unzue-Belmonte D, Cornelis J, et al. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant and Soil, 2019, 438: 187-203
|
[18] |
Zhu H, Wang ZX, Luo XM, et al. Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity. Journal of Agricultural Science, 2014, 152: 741-748
|
[19] |
Liu Y, Li J, Jiao XY, et al. Effects of biochar on water quality and rice productivity under straw returning condition in a rice-wheat rotation region. Science of the Total Environment, 2022, 819: 152063
|
[20] |
柳瑞, Hafeez Abdul, 李恩琳, 等. 减氮配施稻秆生物炭对稻田土壤养分及植株氮素吸收的影响. 应用生态学报, 2020, 31(7): 2381-2389
|
[21] |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000
|
[22] |
戴伟民, 张克勤, 段彬伍, 等. 测定水稻硅含量的一种简易方法. 中国水稻科学, 2005, 19(5): 460-462
|
[23] |
Huang M, Fan L, Chen J, et al. Continuous applications of biochar to rice: Effects on nitrogen uptake and utilization. Scientific Reports, 2018, 8: 11461
|
[24] |
王显, 张国良, 霍中洋, 等. 氮硅互作对水稻硅素吸收积累、分配及产量的影响. 耕作与栽培, 2010(3): 7, 12-13
|
[25] |
水茂兴, 陈德富, 蒋式洪, 等. 水稻硅氮营养的相互作用及其对产量的影响. 土壤通报, 1995, 26(7): 29-32
|
[26] |
吴建富, 谢凡, 付桃秀, 等. 氮硅配施对双季水稻产量及氮硅养分吸收利用的影响. 江西农业大学学报, 2017, 39(5): 843-850
|
[27] |
江立庚, 曹卫星, 甘秀芹, 等. 水稻氮素吸收、利用与硅素营养的关系. 中国农业科学, 2004, 37(5): 648-655
|
[28] |
Tsujimoto Y, Homma KT, Shiraiwa T. The effects of soil drying and rewetting on rice growth in lowland aquatic Ferralsols in the southeastern forest region of Madagascar. Plant and Soil, 2010, 333: 219-232
|
[29] |
邢雪荣, 张蕾. 植物的硅素营养研究综述. 植物学通报, 1998, 15(2): 33-40
|
[30] |
Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10: 024019
|
[31] |
Tian J, Lu S, Fan M, et al. Integrated management systems and N fertilization: Effect on soil organic matter in rice-rapeseed rotation. Plant and Soil, 2013, 372: 53-63
|
[32] |
杨惟薇, 张超兰, 曹美珠, 等. 4种生物炭对镉污染潮土钝化修复效果研究. 水土保持学报, 2015, 29(1): 239-243
|
[33] |
Liang B, Lehmann J, Sohi SP, et al. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 2010, 41: 206-213
|
[34] |
Sommer M, Kaczoek D, Kuzyakov Y, et al. Silicon pools and fluxes in soils and landscapes: A review. Journal of Plant Nutrition and Soil Science, 2006, 169: 310-329
|
[35] |
宁川川, 杨荣双, 蔡茂霞, 等. 水稻-雍菜间作系统中种间关系和水稻的硅、氮营养状况. 应用生态学报, 2017, 28(2): 500-510
|
[36] |
Tavakkoli E, Lyons G, English P, et al. Silicon nutrition of rice is affected by soil pH, weathering and silicon fertilization. Journal of Plant Nutrition and Soil Science, 2011, 174: 437-446
|
[37] |
Qiao J, Yang L, Yan T, et al. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agriculture, Ecosystems and Environment, 2012, 146: 103-112
|
[38] |
柳瑞, 高阳, 李恩琳, 等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响. 生态环境学报, 2020, 29(5): 926-932
|