[1] 梁利宝, 冯鹏艳. 生物炭与有机肥、无机肥配施对采煤塌陷区复垦土壤理化性状的影响. 水土保持学报, 2017, 31(5): 305-308 [Liang L-B, Feng P-Y. Effects of biochar and combined application with organic, che-mical fertilizers on physical and chemical properties of coal-mining subsidence reclaimed soil. Journal of Soil and Water Conservation, 2017, 31(5): 305-308] [2] 靳东升, 张强. 山西省采煤区土地复垦区划研究. 山西农业科学, 2009, 37(6): 54-58 [Jin D-S, Zhang Q. Study on zoning for land reclamation in coal-mine areas in Shanxi. Journal of Shanxi Agricultural Sciences, 2009, 37(6): 54-58] [3] 刘远, 朱继荣, 吴雨晨, 等. 施用生物质炭对采煤塌陷区土壤氨氧化微生物丰度和群落结构的影响. 应用生态学报, 2017, 28(10): 3417-3423 [Liu Y, Zhu J-R, Wu Y-C, et al. Effects of biochar application on the abundance and structure of soil ammonia-oxidizer communities in coal-mining area. Chinese Journal of Applied Ecology, 2017, 28(10): 3417-3423] [4] 张光亚, 方柏山, 闵航, 等. 设施栽培土壤氧化亚氮排放及其影响因子的研究. 农业环境科学学报, 2004, 23(1): 144-147 [Zhang G-Y, Fang B-S, Min H, et al. N2O fluxes from greenhouse soil and its influence factors. Journal of Agro-Environment Science, 2004, 23(1): 144-147] [5] 战秀梅, 彭靖, 王月, 等. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用. 植物营养与肥料学报, 2015, 21(6): 1633-1641 [Zhan X-M, Peng J, Wang Y, et al. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields. Journal of Plant Nutrition and Fertilizers, 2015, 21(6): 1633-1641] [6] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16): 3324-3333 [Chen W-F, Zhang W-M, Meng J. Advances and prospects in research of biochar utilization in agriculture. Scientia Agricultura Sinica, 2013, 46(16): 3324-3333] [7] 刘晓雨, 卞荣军, 陆海飞, 等. 生物质炭与土壤可持续管理: 从土壤问题到生物质产业. 中国科学院院刊, 2018, 33(2): 184-190 [Liu X-Y, Bian R-J, Lu H-F, et al. Biochar for sustainable soil management: Biomass technology and industry from soil perspectives. Bulletin of the Chinese Academy of Sciences, 2018, 33(2): 184-190] [8] Liu Q, Zhang YH, Liu BJ, et al. How does biochar influence soil N cycle? A meta-analysis. Plant and Soil, 2018, 426: 211-225 [9] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems: A review. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 395-419 [10] 魏春辉, 任奕林, 刘峰, 等. 生物炭及生物炭基肥在农业中的应用研究进展. 河南农业科学, 2016, 45(3): 14-19 [Wei C-H, Ren Y-L, Liu F, et al. Research progress of application of biochar and biochar-based fertilizer in agriculture. Journal of Henan Agricultural Sciences, 2016, 45(3):14-19] [11] 潘全良, 宋涛, 陈坤, 等. 连续6年施用生物炭和炭基肥对棕壤生物活性的影响. 华北农学报, 2016, 31(3): 225-232 [Pan Q-L, Song T, Chen K, et al. Influences of 6-year application of biochar and biochar-based compound fertilizer on soil bioactivity on brown soil. Acta Agriculturae Boreali-Sinica, 2016, 31(3): 225-232] [12] 常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响. 中国烟草学报, 2018, 24(6): 58-66 [Chang D, Ma W-H, Zhang K, et al. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil. Acta Tabacaria Sinica, 2018, 24(6): 58-66] [13] 陈懿, 吴春, 李彩斌, 等. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响. 微生物学报, 2020, 60(4): 653-666 [Chen Y, Wu C, Li C-B, et al. Effect of biochar-based fertilizer on bacterial and fungal community composition and diversity in tobacco-planting yellow soil. Acta Microbiologica Sinica, 2020, 60(4): 653-666] [14] 朱永官, 王晓辉, 杨小茹, 等. 农田土壤N2O产生的关键微生物过程及减排措施. 环境科学, 2014, 35(2): 792-800 [Zhu Y-G, Wang X-H, Yang X-R, et al. Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies. Environmental Science, 2014, 35(2): 792-800] [15] Xie Z, Xu Y, Liu G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant and Soil, 2013, 37: 527-540 [16] 潘逸凡, 杨敏, 董达, 等. 生物质炭对土壤氮素循环的影响及其机理研究进展. 应用生态学报, 2013, 24(9): 2666-2673 [Pan Y-F, Yang M, Dong D, et al. Effects of biochar on soil nitrogen cycle and related mechanisms: A review. Chinese Journal of Applied Eco-logy, 2013, 24(9): 2666-2673] [17] Ball PN, MacKenzie MD, DeLuca TH, et al. Wildfire and charcoal enhance nitrification and ammonium oxidizing bacterial abundance in dry montane forest soils. Journal of Environmental Quality, 2010, 39: 1243-1253 [18] Bi QF, Chen Q, Yang X, et al. Effects of combined application of nitrogen fertilizer and biochar on the nitrification and ammonia oxidizers in an intensive vegetable soil. AMB Express, 2017, 7: 198 [19] 陈晨, 许欣, 毕智超, 等. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响. 环境科学学报, 2017, 37(5): 1912-1920 [Chen C, Xu X, Bi Z-C, et al. Effects of biochar and organic manure on N2O emissions and the functional gene abundance of nitrification and denitrification microbes under intensive vegetable production. Acta Scientiae Circumstantiae, 2017, 37(5): 1912-1920] [20] Liu Y, Zhu JR, Ye CY, et al. Effects of biochar application on the abundance and community composition of denitrifying bacteria in a reclaimed soil from coal mining subsidence area. Science of the Total Environment, 2018, 625: 1218-1224 [21] Hagemann N, Harter J, Kaldamukova R, et al. Does soil aging affect the N2O mitigation potential of biochar? A combined microcosm and field study. Global Change Biology Bioenergy, 2017, 9: 953-964 [22] Edwards JD, Pittelkow CM, Kent AD, et al. Dynamic biochar effects on soil nitrous oxide emissions and underlying microbial processes during the maize growing season. Soil Biology and Biochemistry, 2018, 122: 81-90 [23] 朱省峰. 安徽省淮北市煤矿采空塌陷现状与治理对策分析. 安徽地质, 2009, 19(1): 75-77 [Zhu S-F. Current situation and treatment measure analysis of mining collapses in coal mines in Huaibei City, Anhui Province. Geology of Anhui, 2009, 19(1): 75-77] [24] 朱继荣, 韦绪好, 祝鹏飞, 等. 施用生物炭抑制塌陷区复垦土壤硝化作用. 农业工程学报, 2015, 31(7): 264-271 [Zhu J-R, Wei X-H, Zhu P-F, et al. Biochar addition inhibiting nitrification of reclaimed soil in coal-mining subsidence area. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 264-271] [25] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000 [Lu R-K. Analysis Methods of Soil Agrochemistry. Beijing: China Agricultural Science and Technology Press, 2000] [26] Shen JP, Zhang LM, Zhu YG, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 2008, 10: 1601-1611 [27] Henry S, Brue D, Stress B, et al. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Applied and Environmental Microbiology, 2004, 72: 5181-5189 [28] Throbäck IN, Enwall K, Jarvis Å, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiology Ecology, 2004, 49: 401-417 [29] Braker G, Fesefeldt A, Witzel KP. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 1998, 64: 3769-3775 [30] 杨铁钊, 杨志晓, 林娟, 等. 不同烤烟基因型根际钾营养和根系特性研究. 土壤学报, 2009, 46(4): 646-651 [Yang T-Z, Yang Z-X, Lin J, et al. K nutrition in rhizosphere and characteristics of roots of flue-cured tobaccos different in genotype. Acta Pedologica Sinica, 2009, 46(4): 646-651] [31] 王晓辉, 郭光霞, 郑瑞伦, 等. 生物炭对设施退化土壤氮相关功能微生物群落丰度的影响. 土壤学报, 2013, 50(3): 624-631 [Wang X-H, Guo G-X, Zheng R-L, et al. Effect of biochar on abundance of N-related functional microbial communities in degraded greenhouse soil. Acta Pedologica Sinica, 2013, 50(3): 624-631] [32] Enwall K, Nybery K, Bertilsson S. Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biology and Biochemistry, 2007, 39: 106-115 [33] He JZ, Shen JP, Zhang LM, et al. A review of ammonia oxidizing bacteria and archaea in Chinese soils. Frontiers in Microbiology, 2012, 3: 296 [34] Jia ZJ, Conrad R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil. Environmental Microbiology, 2009, 11: 1658-1671 [35] 李培培, 仝昊天, 韩燕来, 等. 秸秆直接还田与炭化还田对潮土硝化微生物的影响. 土壤学报, 2019, 56(6): 1471-1481 [Li P-P, Tong H-T, Han Y-L, et al. Effect of straw return, directly or as biochar, on nitri-fying microbes in fluvo-aquic soil. Acta Pedologica Sinica, 2019, 56(6): 1471-1481] [36] Muema EK, Cadisch G, Röhl C, et al. Response of ammonia-oxidizing bacteria and archaea to biochemical quality of organic inputs combined with mineral nitrogen fertilizer in an arable soil. Applied Soil Ecology, 2015, 95: 128-139 [37] Ducey TF, Ippolito JA, Cantrell KB, et al. Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 2013, 65: 65-72 [38] Anderson CR, Condron LM, Clough TJ, et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 2011, 54: 309-320 [39] Harter J, Krause HM, Schuettler S, et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME Journal, 2014, 8: 660-674 [40] Zheng J, Chen J, Pan G, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 2016, 571: 206-217 [41] Zhang DX, Yan M, Niu YR, et al. Is current biochar research addressing global soil constraints for sustainable agriculture. Agriculture, Ecosystems and Environment, 2016, 226: 25-32 [42] 莫旭华, 麻威, 史荣久, 等. 氮肥对小麦田土壤nirS型反硝化细菌多样性的影响. 微生物学报, 2009, 49(9): 1203-1208 [Mo X-H, Ma W, Shi R-J, et al. Diversity of nirS-type denitrifying bacteria under different nitrogen fertilizer management in wheat soil. Acta Microbiologica Sinica, 2009, 49(9): 1203-1208] [43] 罗希茜, 陈哲, 胡荣桂, 等. 长期施用氮肥对水稻土亚硝酸还原酶基因多样性的影响. 环境科学, 2010, 31(2): 423-430 [Luo X-Q, Chen Z, Hu R-G, et al. Effect of long-term fertilization on the diversity of nitrite reductase genes (nirK and nirS) in paddy soil. Environmental Science, 2010, 31(2): 423-430] [44] 曾希柏, 王亚男, 王玉忠, 等. 施肥对设施菜地nirK型反硝化细菌群落结构和丰度的影响. 应用生态学报, 2014, 25(2): 505-514 [Zeng X-B, Wang Y-N, Wang Y-Z, et al. Effects of different fertilization regimes on abundance and community structure of the nirK type denitrifying bacteria in greenhouse vegetable soil. Chinese Journal of Applied Ecology, 2014, 25(2): 505-514] [45] Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microbial Ecology, 2010, 60: 850-861 [46] Palmer K, Drake HL, Horn MA. Association of novel and highly diverse acid-tolerant denitrifiers with N2O fluxes of an acidic fen. Applied and Environmental Microbiology, 2010, 76: 1125-1134 [47] Simek M, Cooper JE. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 2002, 53: 345-354 |