[1] 傅伯杰. 我国生态系统研究的发展趋势与优先领域. 地理研究, 2010, 29(3): 383-396 [2] 李子, 张艳芳. 基于InVEST模型的渭河流域干支流生态系统服务时空演变特征分析. 水土保持学报, 2021, 35(4): 178-185 [3] Sánchez-Canales M, Benito AL, Passuello A, et al. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Science of the Total Environment, 2012, 440: 140-153 [4] Ahmed MAA, Abd-Elrahman A, Escobedo FJ, et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States. Journal of Environmental Management, 2017, 199: 158-171 [5] Yao TD, Qin DH, Shen YP, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau. Chinese Journal of Nature, 2013, 35: 179-186 [6] 王亚慧, 戴尔阜, 马良, 等. 横断山区产水量时空分布格局及影响因素研究. 自然资源学报, 2020, 35(2): 371-386 [7] Bai Y, Zheng H, Ouyang ZY, et al. Modeling hydrolo-gical ecosystem services and tradeoffs: A case study in Baiyangdian watershed, China. Environmental Earth Sciences, 2013, 70: 709-718 [8] Dennedy-Frank PJ, Muenich RL, Chaubey I, et al. Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management, 2016, 177: 331-340 [9] Len MDK, Matlock MD, Cummings EC, et al. Quanti-fying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 2013, 165: 6-18 [10] Li M, Liang D, Xia J, et al. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. Journal of Environmental Management, 2021, 286: 112211 [11] Vigerstol KL, Aukema JE. A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management, 2011, 92: 2403-2409 [12] 王晓峰, 符鑫鑫, 楚冰洋, 等. 秦岭生态屏障产水服务时空演变特征及驱动要素. 自然资源学报, 2021, 36(10): 2507-2521 [13] 刘宥延, 刘兴元, 张博, 等. 基于InVEST模型的黄土高原丘陵区水源涵养功能空间特征分析. 生态学报, 2020, 40(17): 302-311 [14] Larondelle N, Haase D. Urban ecosystem services assessment along a rural-urban gradient: A cross-analysis of European cities. Ecological Indicators, 2013, 29: 179-190 [15] 郑续, 魏乐民, 郭建军, 等. 基于地理探测器的干旱区内陆河流域产水量驱动力分析——以疏勒河流域为例. 干旱区地理, 2020, 43(6): 1477-1485 [16] 林世伟, 武瑞东. “三江并流”区生态系统供水服务的空间分布特征. 西部林业科学, 2015, 44(3): 8-15 [17] Wang Y, Zhao J, Fu J, et al. Effects of the Grain for Green Program on the water ecosystem services in an arid area of China-using the Shiyang River Basin as an example. Ecological Indicators, 2019, 104: 659-668 [18] Yang J, Xie B, Zhang D, et al. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environmental Earth Sciences, 2021, 80: 1-12 [19] Hu WM, Li G, Gao ZH, et al. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Science of the Total Environment, 2020, 733: 139423 [20] 戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析. 地理学报, 2020, 75(3): 607-619 [21] 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134 [22] 陶海燕, 潘中哲, 潘茂林, 等. 广州大都市登革热时空传播混合模式. 地理学报, 2016, 71(9): 1653-1662 [23] Wang JF, Li XH, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010, 24: 107-127 [24] 李在军, 尹上岗, 张晓奇, 等. 中国城市流动人口房租收入比时空格局及驱动因素. 地理科学, 2020, 40(1): 103-111 [25] 刘彦随, 李进涛. 中国县域农村贫困化分异机制的地理探测与优化决策. 地理学报, 2017, 72(1): 161-173 [26] 丁倩, 张弛. 基于地理探测器的中国陆地生态系统土壤有机碳空间异质性影响因子分析. 生态环境学报, 2021, 30(1): 19-28 [27] 裴志林, 杨勤科, 王春梅, 等. 黄河上游植被覆盖度空间分布特征及其影响因素. 干旱区研究, 2019, 36(3): 546-555 [28] 任向宁, 董玉祥. 基于地理探测器的区域土壤耕层有机碳含量多元复合模型构建——以珠三角核心区为例. 热带地理, 2018, 38(4): 546-556 [29] 张文静, 孙小银, 单瑞峰, 等. 1975—2018年南四湖流域景观生态风险时空变化及其驱动因素研究. 生态科学, 2020, 39(3): 172-181 [30] Liang P, Yang X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena, 2016, 145: 321-333 [31] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应. 地球科学进展, 2015, 30(7): 791-801 [32] Wang JF, Hu Y. Environmental health risk detection with GeoDetector. Environmental Modelling & Software, 2012, 33: 114-115 [33] Delphin S, Escobedo FJ, Abd-Elrahman A, et al. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy, 2016, 54: 188-199 [34] Sun G, Peter C, Asko N, et al. Upscaling key ecosystem functions across the conterminous United States by a water-centric ecosystem model. Journal of Geophysical Research: Biogeosciences, 2011, 116: G00J05 [35] 杨江州, 周旭, 程东亚, 等. 贵州省不同地貌类型区的MOD16蒸散发变化特征. 水土保持研究, 2019, 26(2): 216-222 [36] 邵一敏, 赵洋毅, 段旭, 等. 金沙江干热河谷典型林草地植物根系对土壤优先流的影响. 应用生态学报, 2020, 31(3): 725-734 [37] 刘纪远, 宁佳, 匡文慧, 等. 2010—2015年中国土地利用变化的时空格局与新特征. 地理学报, 2018, 73(5): 789-802 [38] 王丽丽, 刘笑杰, 李丁, 等. 长江经济带PM2.5空间异质性和驱动因素的地理探测. 环境科学, 2022, 43(3): 1190-1200 [39] 范广洲, 吕世华, 程国栋. 气候变化对滦河流域水资源影响的水文模式模拟(Ⅱ): 模拟结果分析. 高原气象, 2001, 20(3): 302-310 [40] Hou Y, Lu Y, Chen W, et al. Temporal variation and spatial scale dependency of ecosystem service interactions: A case study on the central Loess Plateau of China. Landscape Ecology, 2017, 32: 1201-1217 |