[1] 傅伯杰, 刘世梁, 马克明. 生态系统综合评价的内容与方法. 生态学报, 2001, 21(11): 1885-1892 [2] 刘焱序, 彭建, 汪安, 等. 生态系统健康研究进展. 生态学报, 2015, 35(18): 5920-5930 [3] Rapport DJ, Bhm G, Buckingham D, et al. Ecosystem health: The concept, the ISEH, and the important tasks ahead. Ecosystem Health, 1999, 5: 82-90 [4] Zhang F, Zhang JQ, Wu RN, et al. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China. Stochastic Environmental Research and Risk Assessment, 2016, 30: 1235-1247 [5] Zhao C, Shao N, Yang S, et al. Integrated assessment of ecosystem health using multiple indicator species. Ecological Engineering, 2019, 130: 157-168 [6] Sun BD, Tang JC, Yu DH, et al. Ecoystem health assessment: A PSR analysis combining AHP and FCE methods for Jaozhou Bay, China. Ocean & Coastal Management, 2019, 168: 41-50 [7] 杨斌, 隋鹏, 陈源泉, 等. 生态系统健康评价研究进展. 中国农学通报, 2010, 26(21): 291-296 [8] 陈万旭, 赵雪莲, 钟明星, 等. 长江中游城市群生态系统健康时空演变特征分析. 生态学报, 2022, 42(1): 138-149 [9] 赵衡, 闫旭, 王富强, 等. 基于PSR模型的三门峡库区湿地生态系统健康评价. 水资源保护, 2020, 36(4): 21-25 [10] 李晓东, 杨清, 刘惠秋, 等. 雅鲁藏布江中游河流生态系统健康状态对水环境因子的响应. 环境科学, 2023, doi: 10.13227/j.hjkx.202211063 [11] 史国锋, 张佳宁, 姚林杰, 等. 内蒙古草原生态系统健康评价体系构建——基于植被型、植被亚型、群系三个等级. 内蒙古大学学报:自然科学版, 2022, 53(1): 55-65 [12] 汪小钦, 林梦婧, 丁哲, 等. 基于指标自动筛选的新疆开孔河流域生态健康评价. 生态学报, 2020, 40(13): 4302-4315 [13] Hu ZY, Wang SJ, Bai XY, et al. Changes in ecosystem service values in Karst areas of China. Agriculture, Ecosystems and Environment, 2020, 301: 107026 [14] Jiang ZC, Lian YQ, Qin XQ. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 2014, 132: 1-12 [15] Ouyang Z, Zheng H, Xiao Y, et al. Improvements in ecosystem services from investments in natural capital. Science, 2016, 352: 1455-1459 [16] Zhou LG, Wang XD, Wang ZY, et al. The challenge of soil loss control and vegetation restoration in the Karst area of southwestern China. International Soil and Water Conservation Research, 2019, 8: 26-34 [17] Gao B, Zang WQ, Luo W. Spatial-temporal shifts of ecological vulnerability of Karst Mountain ecosystem: Impacts of global change and anthropogenic interference. Science of the Total Environment, 2020, 741: 140256 [18] 林俊清. 贵州喀斯特与非喀斯特地貌分布面积及其特征分析. 贵州教育学院学报:自然科学版, 2001, 12(4): 43-46 [19] 李冠稳, 肖能文, 李俊生. 基于理想参照系—关键指标的赤水河流域生态系统质量变化趋势分析. 生态学报, 2021, 41(18): 7114-7124 [20] 欧维新, 张伦嘉, 陶宇, 等. 基于土地利用变化的长三角生态系统健康时空动态研究. 中国人口·资源与环境, 2018, 28(5): 84-92 [21] Jiang YL, Guo J, Peng Q, et al. The effect of climate factors and human activities on net primary productivity in Xinjiang. International Journal of Biometeorology, 2020, 64: 765-777 [22] Feng T, Chen HS, Polyakov VO, et al. Soil erosion rates in two Karst peak-cluster depression basins of northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements. Geomorphology, 2016, 253: 217-224 [23] Zhu DY, Xiong KN, Xiao H. Multi-time scale variability of rainfall erosivity and erosivity density in the Karst region of southern China, 1960-2017. Catena, 2021, 197: 107977 [24] Williams JR, Jones CA, Kiniry JR, et al. The EPIC crop growth model. Transactions of the American Society of Agricultural Engineers, 1989, 32: 497-511 [25] McCool DK, Brown LC, Foster GR, et al. Revised slope steepness factor for the universal soil loss equation. Transactions of the American Society of Agricultural Engineers, 1987, 30: 1387-1396 [26] McCool DK, Foster GR, Mutchler CK, et al. Revised slope length factor for the universal soil loss equation. Transactions of the American Society of Agricultural Engineers, 1989, 32: 1571-1576 [27] Zhang HM, Yang QK, Li R, et al. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 2013, 52: 177-188 [28] 许月卿, 邵晓梅. 基于GIS和RUSLE的土壤侵蚀量计算——以贵州省猫跳河流域为例. 北京林业大学学报, 2006, 28(4): 67-71 [29] 杨晓楠. 黄土高原多尺度景观格局对径流及输沙过程的影响. 硕士论文. 杨凌: 西北农林科技大学, 2019 [30] 中华人民共和国生态环境部. 生态环境状况评价技术规范(HJ 192—2015). 北京: 中华人民共和国生态环境部 [31] Meng LR, Huang J, Dong JH. Assessment of rural ecosystem health and type classification in Jiangsu Pro-vince, China. Science of the Total Environment, 2018, 615: 1218-1228 [32] Peng J, Liu YX, Li TY, et al. Regional ecosystem health response to rural land use change: A case study in Lijiang City, China. Ecological Indicators, 2017, 72: 399-410 [33] 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017, 72(1): 116-134 [34] 张恩伟. 滇中城市群产水服务和土壤保持服务时空格局演变及其影响因素研究. 硕士论文. 昆明: 云南师范大学, 2021 [35] 余梦, 李阳兵, 罗光杰. 中国西南岩溶山地石漠化演变趋势. 生态学报, 2022, 42(10): 4267-4283 [36] 丁肇慰, 肖能文, 高晓奇, 等. 长江流域2000—2015年生态系统质量及服务变化特征. 环境科学研究, 2020, 33(5): 1308-1314 [37] 程东亚, 李旭东. 贵州乌蒙山区人口-经济-农业生态环境耦合协调关系研究. 世界地理研究, 2021, 30(1): 125-135 [38] 沙宏杰, 张东, 施顺杰, 等. 基于耦合模型和遥感技术的江苏中部海岸带生态系统健康评价. 生态学报, 2018, 38(19): 7102-7112 [39] 李胜平, 王克林. 人为干扰对桂西北喀斯特山地植被多样性及土壤养分分布的影响. 水土保持研究, 2016, 23(5): 20-27 [40] 丁颖蕾, 周运超. 喀斯特小流域坡度-土层厚度与岩石裸露率间耦合关系的研究. 土壤通报, 2019, 50(5): 1053-1061 [41] 张佑铭, 郎梦凡, 刘梦云, 等. 土地利用转变与海拔高度协同作用下黄土高原植被固碳变化特征. 生态学报, 2022, 42(10): 3897-3908 [42] Jiang Y, Gao JB, Yang L, et al. The interactive effects of elevation, precipitation and lithology on karst rainfall and runoff erosivity. Catena, 2021, 207: 105588 [43] 彭旭东, 戴全厚, 杨智, 等. 喀斯特山地石漠化过程中地表地下侵蚀产沙特征. 土壤学报, 2016, 53(5): 1237-1248 |