[1] Schimel D, Stephens BB, Fisher JB. Effect of increasing CO2 on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 436-441 [2] Bastos A, Ciais P, Friedlingstein P, et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Science Advances, 2020, 6: eaba2724 [3] McDowell NG, Allen CD, Anderson-Teixeira K, et al. Pervasive shifts in forest dynamics in a changing world. Science, 2020, 368: aaz9463 [4] McDowell N, Pockman WT, Allen CD, et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 2008, 178: 719-739 [5] Zhang J, Gou X, Pederson N, et al. Cambial phenology in Juniperus przewalskii along different altitudinal gra-dients in a cold and arid region. Tree Physiology, 2018, 38: 840-852 [6] Allen CD, Macalady AK, Chenchouni H, et al. A glo-bal overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259: 660-684 [7] Choat B, Brodribb TJ, Brodersen CR, et al. Triggers of tree mortality under drought. Nature, 2018, 558: 531-539 [8] Fan ZX, Brauning A, Cao KF. Annual temperature reconstruction in the central Hengduan Mountains, China, as deduced from tree rings. Dendrochronologia, 2008, 26: 97-107 [9] Rossi S, Anfodillo T, Cufar K, et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology, 2016, 22: 3804-3813 [10] Nemani RR, Keeling CD, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 2003, 300: 1560-1563 [11] Zhu J, Hu H, Tao S, et al. Carbon stocks and changes of dead organic matter in China's forests. Nature, 2017, 8: 151 [12] Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1013 [13] Böhner J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 2006, 35: 279-295 [14] Fan ZX, Brauning A, Thomas A, et al. Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961-2004. International Journal of Climatology, 2011, 31: 2078-2090 [15] Panthi S, Brauning A, Zhou ZK, et al. Growth response of Abies georgei to climate increases with elevation in the central Hengduan Mountains, southwestern China. Dendrochronologia, 2018, 47: 1-9 [16] 张菊梅, 范泽鑫, 付培立, 等. 普达措国家公园四种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3548-3456 [17] 杨绕琼, 范泽鑫, 李宗善, 等. 滇西北玉龙雪山不同海拔云南松(Pinus yunnanensis)径向生长对气候因子的响应. 生态学报, 2018, 38(24): 8983-8991 [18] Duchesne L, Houle D. Modelling day-to-day stem diame-ter variation and annual growth of balsam fir (Abies balsamea (L.) Mill.) from daily climate. Forest Ecology and Management, 2011, 262: 863-872 [19] Tumajer J, Scharnweber T, Smiljanic M, et al. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous tempe-rate broadleaves. New Phytologist, 2022, 233: 2429-2441 [20] Xue F, Jiang Y, Dong M, et al. Different drought responses of stem water relations and radial increments in Larix principis-rupprechtii and Picea meyeri in a montane mixed forest. Agricultural and Forest Meteorology, 2022, 315: 108817 [21] 韦小练, 范泽鑫, Kaewmano A, 等. 热带季节雨林多花白头树年内径向生长动态及其对环境因子的响应. 应用生态学报, 2021, 32(10): 3567-3575 [22] 李宏伟, 赵元藩. 白马雪山国家级自然保护区植物多样性. 广西植物, 2007, 27(1): 71-76 [23] 杨沛芳, 旺丁. 白马雪山自然保护区北部曲宗贡金妞河流域植被类型调查研究. 林业调查规划, 2013, 38(4): 101-106 [24] Duursma RA. Plantecophys: An R package for analysing and modelling leaf gas exchange data. PLoS One, 2015, 10(11): e0143346 [25] Zweifel R, Haeni M, Buchmann N, et al. Are trees able to grow in periods of stem shrinkage? New Phytologist, 2016, 211: 839-849 [26] Tixier A, Guzman-Delgado P, Sperling O, et al. Comparison of phenological traits, growth patterns, and seasonal dynamics of non-structural carbohydrate in Mediterranean tree crop species. Scientific Reports, 2020, 10: 347 [27] Gurskaya MA, Shiyatov SG. Distribution of frost injuries in the wood of conifers. Russian Journal of Ecology, 2006, 37: 7-12 [28] Simard S, Giovannelli A, Treydte K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 2013, 33: 913-923 [29] Schiestl-Aalto P, Kulmala L, Makinen H, et al. CASSIA: A dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytologist, 2015, 206: 647-659 [30] Simard S, Giovannelli A, Treydte K, et al. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiology, 2013, 33: 913-923 [31] 季倩雯, 郑成洋, 张磊, 等. 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 2020, 44(3): 257-265 [32] Li X, Rossi S, Sigdel S, et al. Warming menaces high-altitude Himalayan birch forests: Evidence from cambial phenology and wood anatomy. Agricultural and Forest Meteorology, 2021, 308-309: 108577 [33] Zhang J, Gou X, Alexander MR, et al. Drought limits wood production of Juniperus przewalskii even as growing seasons lengthens in a cold and arid environment. Catena, 2021, 196: 104936 [34] Lu X, Liang E, Babst F, et al. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119: e2118120119 [35] Ren P, Rossi S, Gricar J, et al. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? Annals of Botany, 2015, 115: 629-639 [36] 孟盛旺, 杨风亭, 戴晓琴, 等. 杉木径向生长动态及其对季节性干旱的响应. 应用生态学报, 2021, 32(10): 3521-3530 [37] Hu LF, Fan ZX. Stem radial growth in response to microclimate in an Asian tropical dry karst forest. Acta Ecologica Sinica, 2016, 36: 401-409 [38] 高佳妮, 杨保, 秦春. 树木年内径向生长对干旱事件的响应——以贺兰山油松为例. 应用生态学报, 2021, 32(10): 3505-3511 [39] Peters RL, Steppe K, Cuny HE, et al. Turgor: A limi-ting factor for radial growth in mature conifers along an elevational gradient. New Phytologist, 2021, 229: 213-229 [40] Cuny HE, Rathgeber CB, Frank D, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants, 2015, 1: 15160 |