[1] 唐克丽, 张仲子, 孔晓玲, 等. 黄土高原水土流失与土壤退化的研究. 水土保持通报, 1987, 7(6): 12-18 [Tang K-L, Zhang Z-Z, Kong X-L, et al. A study of soil loss and soil degradation in the Loess Plateau. Bulletin of Soil and Water Conservation, 1987, 7(6): 12-18] [2] 耿德洲, 黄菁华, 霍娜, 等. 黄土高原半干旱区不同种植年限紫花苜蓿人工草地土壤微生物和线虫群落特征. 应用生态学报, 2020, 31(4): 1365-1377 [Geng D-Z, Huang J-H, Huo N, et al. Characteristics of soil microbial and nematode communities under artificial Medicago sativa grasslands with different cultivation years in semi-arid region of Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 2020, 31(4): 1365-1377] [3] 李婷, 赵世伟, 李晓晓, 等. 宁南山区不同年限苜蓿地土壤有机质官能团特征. 应用生态学报, 2012, 23(12): 3266-3272 [Li T, Zhao S-W, Li X-X, et al. Characters of soil organic matter functional groups in the fields planted with alfalfa (Medicago sativa) for different years in hilly regions of south Ningxia, Northwest China. Chinese Journal of Applied Ecology, 2012, 23(12): 3266-3272] [4] 宋丽萍, 牛伊宁, 罗珠珠, 等. 黄土高原苜蓿及后茬作物土壤水分恢复效应及蒸散特征. 草业科学, 2019, 36(5): 1231-1239 [Song L-P, Niu Y-N, Luo Z-Z, et al. Evapotranspiration and water dynamics of lucerne and following crops in the northwest Loess Plateau. Pratacultural Science, 2019, 36(5): 1231-1239] [5] 尹国丽, 蔡卓山, 陶茸, 等. 不同草田轮作方式对土壤肥力、微生物数量及自毒物质含量的影响. 草业学报, 2019, 28(3): 42-50 [Yin G-L, Cai Z-S, Tao R, et al. Effects of different crop rotations on soil nutrient, microorganism abundance and soil allelochemical levels in alfalfa. Acta Prataculturae Sinica, 2019, 28(3): 42-50] [6] 李玉占, 梁文举, 姜勇. 苜蓿化感作用研究进展. 生态学杂志, 2004, 23(5): 186-191 [Li Y-Z, Liang W-J, Jiang Y. Research progress in alfalfa allelopathy. Chinese Journal of Ecology, 2004, 23(5): 186-191] [7] 虎德钰, 毛桂莲, 许兴. 不同草田轮作方式对土壤微生物和土壤酶活性的影响. 西北农业学报, 2014, 23(9): 106-113 [Hu D-Y, Mao G-L, Xu X. Effects of different grass-crop rotation on edaphon and enzyme activity in soil. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(9): 106-113] [8] 宋丽萍, 罗珠珠, 李玲玲, 等. 苜蓿-作物轮作模式对土壤团聚体稳定性及有机碳的影响. 中国生态农业学报, 2016, 24(1): 27-35 [Song L-P, Luo Z-Z, Li L-L, et al. Effects of lucerne-crop rotation patterns on soil aggregate stability and soil organic carbon. Chinese Journal of Eco-Agriculture, 2016, 24(1): 27-35] [9] 秦舒浩, 曹莉, 张俊莲, 等. 轮作豆科植物对马铃薯连作田土壤速效养分及理化性质的影响. 作物学报, 2014, 40(8): 1452-1458 [Qin S-H, Cao L, Zhang J-L, et al. Effect of rotation of leguminous plants on soil available nutrients and physical and chemical properties in continuous cropping potato field. Acta Agronomica Sinica, 2014, 40(8): 1452-1458] [10] 毛桂莲, 虎德钰, 许兴, 等. 干旱风沙区苜蓿后茬不同轮作方式对水分利用效率和产量的影响. 水土保持学报, 2015, 29(3): 219-224 [Mao G-L, Hu D-Y, Xu X, et al. Effects of alfalfa post-harvest rotation on water use efficiency and crop yield in arid sandy area. Journal of Soil and Water Conservation, 2015, 29(3): 219-224] [11] 王俊, 李凤民, 贾宇, 等. 半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化. 应用生态学报, 2005, 16(3): 439-444 [Wang J, Li F-M, Jia Y, et al. Dynamics of soil nitrogen, phosphorus and organic matter in alfalfa-crop rotated farmland in semiarid area of Northwest China. Chinese Journal of Applied Ecology, 2005, 16(3): 439-444] [12] 王劲松, 樊芳芳, 郭珺, 等. 不同作物轮作对连作高粱生长及其根际土壤环境的影响. 应用生态学报, 2016, 27(7): 2283-2291 [Wang J-S, Fan F-F, Guo J, et al. Effects of different crop rotations on growth of continuous cropping sorghum and its rhizosphere soil micro-environment. Chinese Journal of Applied Ecology, 2016, 27(7): 2283-2291] [13] 田福平, 师尚礼, 洪绂曾, 等. 我国草田轮作的研究历史及现状. 草业科学, 2012, 29(2): 320-326 [Tian F-P, Shi S-L, Hong F-Z, et al. Research on history and current situation of forage and crop rotation in China. Pratacultural Science, 2012, 29(2): 320-326] [14] Yeates GW, Bongers T, Degoede R, et al. Feeding-habits in soil nematode families and genera: An outline for soil ecologists. Journal of Nematology, 1993, 25: 315-331 [15] 程云云, 孙涛, 王清奎, 等. 模拟氮沉降对温带森林土壤线虫群落组成和代谢足迹的影响. 生态学报, 2018, 38(2): 475-484 [Cheng Y-Y, Sun T, Wang Q-K, et al. Effects of simulated nitrogen deposition on temperate forest soil nematode communities and their metabolic footprints. Acta Ecologica Sinica, 2018, 38(2): 475-484] [16] 陈云峰, 夏贤格, 胡诚, 等. 有机肥和秸秆还田对黄泥田土壤微食物网的影响. 农业工程学报, 2018, 34(S1): 19-26 [Chen Y-F, Xia X-G, Hu C, et al. Effects of manure fertilizer application and straw return on micro-food web of yellow field soil. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 19-26] [17] Ferris H. Form and function: Metabolic footprints of nematodes in the soil food web. European Journal of Soil Biology, 2010, 46: 97-104 [18] 邵元虎, 傅声雷. 试论土壤线虫多样性在生态系统中的作用. 生物多样性, 2007, 15(2): 116-123 [Shao Y-H, Fu S-L. The diversity and functions of soil nematodes. Biodiversity Science, 2007, 15(2): 116-123] [19] Ponge J, Peres G, Guernion M, et al. The impact of agricultural practices on soil biota: A regional study. Soil Biology & Biochemistry, 2013, 67: 271-284 [20] Ye YY, Rui YC, Zeng ZX, et al. Responses of soil nematode community to monoculture or mixed culture of a grass and a legume forage species in China. Pedosphere, 2020, 30: 791-800 [21] 张晓珂, 梁文举, 李琪. 我国土壤线虫生态学研究进展和展望. 生物多样性, 2018, 26(10): 1060-1073 [Zhang X-K, Liang W-J, Li Q. Recent progress and future directions of soil nematode ecology in China. Biodiversity Science, 2018, 26(10): 1060-1073] [22] Kou XC, Ma NN, Zhang XK, et al. Frequency of stover mulching but not amount regulates the decomposition pathways of soil micro-foodwebs in a no-tillage system. Soil Biology and Biochemistry, 2020, 144: 107789 [23] Zhang XK, Ferris H, Mitchell J, et al. Ecosystem ser-vices of the soil food web after long-term application of agricultural management practices. Soil Biology & Biochemistry, 2017, 111: 36-43 [24] Guan PT, Zhang XK, Yu J, et al. Soil microbial food web channels associated with biological soil crusts in desertification restoration: The carbon flow from microbes to nematodes. Soil Biology & Biochemistry, 2018, 116: 82-90 [25] Zhang ZY, Zhang XK, Jhao JS, et al. Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil. European Journal of Soil Biology, 2015, 66: 40-48 [26] 雷晓婷, 雷金银, 周丽娜, 等. 宁南山区不同耕作方式对坡耕地土壤水分分布的影响研究. 宁夏农林科技, 2020, 61(1): 43-45 [Lei X-T, Lei J-Y, Zhou L-N, et al. Effects of different tillage modes on soil moisture distribution on hilly farmland with gentle slope in mountain area of southern Ningxia. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(1): 43-45] [27] 鲁如坤. 土壤农化分析. 北京: 中国农业科技出版社, 2000 [Lu R-K. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000] [28] Liang WJ, Lou YL, Li Q, et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology & Biochemistry, 2009, 41: 883-890 [29] Bongers T. The Nematodes of the Netherlands. Pirola, the Netherlands: KNNV Library, 1988 [30] 尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998 [Yin W-Y. Pictorial Keys to Soil Animals of China. Beijing: Science Press, 1998] [31] Shannon CE, Weaver W. The Mathematical Theory of Communication. Urbana, IL, USA: University of Illinois Press, 1949 [32] Bongers T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia, 1990, 83: 14-19 [33] Yeates GW. Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils, 2003, 37: 199-210 [34] Ferris H, Matute MM. Structural and functional succession in the nematode fauna of a soil food web. Applied Soil Ecology, 2003, 23: 93-110 [35] Ferris H, Bongers T, de Goede R. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology, 2001, 18: 13-29 [36] Zhang XK, Guan PT, Wang YL, et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests. Soil Biology & Biochemistry, 2015, 80: 118-126 [37] 陈云峰, 韩雪梅, 李钰飞, et al. 线虫区系分析指示土壤食物网结构和功能研究进展. 生态学报, 2014, 34(5): 1072-1084 [Chen Y-F, Han X-M, Li Y-F, et al. Approach of nematode fauna analysis indicate the structure and function of soil food web. Acta Ecologica Sinica, 2014, 34(5): 1072-1084] [38] Overstreet LF, Hoyt GD, Imbriani J. Comparing nematode and earthworm communities under combinations of conventional and conservation vegetable production practices. Soil & Tillage Research, 2010, 110: 42-50 [39] Rahman L, Chan KY, Heenan DP. Impact of tillage, stubble management and crop rotation on nematode popu-lations in a long-term field experiment. Soil & Tillage Research, 2007, 95: 110-119 [40] Alvey S, Yang CH, Buerkert A, et al. Cereal/legume rotation effects on rhizosphere bacterial community structure in West African soils. Biology and Fertility of Soils, 2003, 37: 73-82 [41] 李辉信, 刘满强, 胡锋, 等. 不同植被恢复方式下红壤线虫数量特征. 生态学报, 2002, 22(11): 1882-1889 [Li H-X, Liu M-Q, Hu F, et al. Nematode abundance under different vegetations restored on degraded red soil. Acta Ecologica Sinica, 2002, 22(11): 1882-1889] [42] 王明伟, 刘雨迪, 陈小云, 等. 旱地红壤线虫群落对不同耕作年限的响应及指示意义. 土壤学报, 2016, 53(2): 510-522 [Wang M-W, Liu Y-D, Chen X-Y, et al. Response of soil nematode community to cultivation in upland red soil relative to cultivation history and its significance as indicator. Acta Pedologica Sinica, 2016, 53(2): 510-522] [43] 陈立杰, 朱艳, 刘彬, 等. 连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响. 植物保护学报, 2007, 34(4): 347-352 [Chen L-J, Zhu Y, Liu B, et al. Influence of continuous cropping and rotation on soybean cyst nematode and soil nematode community structure. Acta Phytophylacica Sinica, 2007, 34(4): 347-352] [44] 钟爽, 何应对, 韩丽娜, 等. 连作年限对香蕉园土壤线虫群落结构及多样性的影响. 中国生态农业学报, 2012, 20(5): 604-611 [Zhong S, He Y-D, Han L-N, et al. Effect of continuous cropping of banana on soil nematode community structure and diversity. Chinese Journal of Eco-Agriculture, 2012, 20(5): 604-611] [45] Govaerts B, Fuentes M, Mezzalama M, et al. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil & Tillage Research, 2007, 94(1): 209-219 [46] 李琪, 梁文举, 姜勇. 农田土壤线虫多样性研究现状及展望. 生物多样性, 2007, 15(2): 134-141 [Li Q, Liang W-J, Jiang Y. Present situation and prospect of soil nematode diversity in farmland ecosystems. Biodiversity Science, 2007, 15(2): 134-141] [47] 李彦斌, 刘建国, 谷冬艳. 植物化感自毒作用及其在农业中的应用. 农业环境科学学报, 2007, 26(suppl.1): 347-350 [Li Y-B, Liu J-G, Gu D-Y. Allelopathic autotoxicity of plants and its application in agriculture. Journal of Agro-Environment Science, 2007, 26(suppl.1): 347-350] [48] 杜晓芳, 李英滨, 刘芳, 等. 土壤微食物网结构与生态功能. 应用生态学报, 2018, 29(2): 403-411 [Du X-F, Li Y-B, Liu F, et al. Structure and ecological functions of soil micro-food web. Chinese Journal of Applied Ecology, 2018, 29(2): 403-411] [49] 海棠, 彭德良, 曾昭海, 等. 耕作制度对甘薯地土壤线虫群落结构的影响. 中国农业科学, 2008, 41(6): 1851-1857 [Hai T, Peng D-L, Zeng Z-H, et al. Effect of cropping systems on nematode community structure in sweet potato field. Scientia Agricultura Sinica, 2008, 41(6): 1851-1857] [50] 张晓飞, 刘奇志, 舒群, 等. 云南红梨园自然生草对土壤线虫群落的影响. 果树学报, 2020, 37(1): 98-105 [Zhang X-F, Liu Q-Z, Shu Q, et al. Primary study on the effects of natural grass on nematode communities in the soil of red pear orchard in Yunnan province. Journal of Fruit Science, 2020, 37(1): 98-105] [51] Yeates GW, Wardle DA. Nematodes as predators and prey: Relationships to biological control and soil processes. Pedobiologia, 1996, 40: 43-50 [52] Bongers T, Bongers M. Functional diversity of nematodes. Applied Soil Ecology, 1998, 10: 239-251 [53] Ferris H, Sanchez-Moreno S, Brennan EB. Structure, functions and interguild relationships of the soil nematode assemblage in organic vegetable production. Applied Soil Ecology, 2012, 61: 16-25 |