[1] Matskovsky V, Kuznetsova V, Morozova P, et al. Estimated influence of extreme climate events in the 21st century on the radial growth of pine trees in Povolzhie region (European Russia). IOP Conference Series Earth and Environmental Science, 2021, 611: 012047 [2] Wang XF, Bao Y. Divergent tree radial growth at alpine coniferous forest ecotone and corresponding responses to climate change in northwestern China. Ecological Indicators, 2021, 121: 107052 [3] Cherubini P, Battipaglia G, Innes JL. Tree vitality and forest health: Can tree-ring stable isotopes be used as indicators? Current Forestry Reports, 2021, 7: 69-80 [4] Wang X, Yang B, Ljungqvist FC. The vulnerability of Qilian juniper to extreme drought events. Frontiers in Plant Science, 2019, 10: 1191 [5] Fang O, Qiu H, Zhang QB. Species-specific drought resilience in juniper and fir forests in the central Himalayas. Ecological Indicators, 2021, 117: 106615 [6] Gaspard DT, Venegas-González A, Beeckman H, et al. Tree ring responses to climate variability of xerophytic thickets from south Soalara, Madagascar. Dendrochronologia, 2018, 49: 57-67 [7] Sangüesa-Barreda G, Camarero JJ, Sanchez-Salguero R, et al. Droughts and climate warming desynchronize black pine growth across the Mediterranean Basin. Science of the Total Environment, 2019, 697: 133989 [8] Chen L, Huang JG, Ma QQ, et al. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Global Change Biology, 2019, 25: 997-1004 [9] Marchand W, Girardin MP, Hartmann H, et al. Taxo-nomy, together with ontogeny and growing conditions, drives needleleaf species' sensitivity to climate in boreal North America. Global Change Biology, 2019, 25: 2793-2809 [10] Camarero JJ, Gazol A, Sangüesa-Barreda G, et al. Coupled climate-forest growth shifts in the Chilean Patagonia are decoupled from trends in water-use efficiency. Agricultural and Forest Meteorology, 2018, 259: 222-231 [11] 张萌, 石松林, 石春明, 等. 川西高原4种典型针叶树径向生长对气候因子的响应. 生态学杂志, 2021, 40(7): 1947-1957 [12] 苟晓霞, 张同文, 袁玉江, 等. 阿尔泰山主要针叶树种树木径向生长及其对气候变化的响应. 应用生态学报, 2021, 32(10): 3594-3608 [13] Li WQ, Jiang Y, Dong MY, et al. Species-specific growth-climate responses of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongo-lica) in the Greater Khingan Range, northeast China. Dendrochronologia, 2021, 65: 125803 [14] Legendre-Fixx M, Anderegg LDL, Ettinger AK, et al. Site- and species-specific influences on sub-alpine conifer growth in Mt. Rainier National Park, USA. Forests, 2018, 9: 1 [15] 李静茹, 彭剑峰, 杨柳, 等. 川西高原两种针叶树径向生长对气候因子的响应. 应用生态学报, 2021, 32(10): 3512-3520 [16] Andreu L, Gutierrez E, Macias M, et al. Climate increases regional tree-growth variability in Iberian pine forests. Global Change Biology, 2007, 13: 804-815 [17] 冯娟, 华亚伟, 张志成, 等. 秦岭南坡镇安油松径向生长-气候因子关系对气温突变的响应. 植物科学学报, 2021, 39(3): 268-277 [18] 韩金生, 赵慧颖, 朱良军, 等. 小兴安岭蒙古栎和黄波罗径向生长对气候变化的响应比较. 应用生态学报, 2019, 30(7): 2218-2230 [19] Jiao L, Xue R, Qi C, et al. Comparison of the responses of radial growth to climate change for two dominant coniferous tree species in the eastern Qilian Mountains, northwestern China. International Journal of Biometeoro-logy, 2021, 65(11): 1823-1836 [20] 何春梅, 刘润清, 杨治春, 等. 秦岭皇冠暖温性落叶阔叶林物种组成与群落结构. 应用生态学报, 2021, 32(8): 2737-2744 [21] 刘元本, 刘玉萃, 张企曾, 等. 河南森林. 中国林业出版社, 2000: 77-123 [22] 王婷, 李聪, 张弘, 等. 宝天曼自然保护区不同针叶树径向生长对气候的响应. 生态学报, 2016, 36(17): 5324-5332 [23] 田沁花, 刘禹, 蔡秋芳, 等. 油松树轮记录的过去134年伏牛山5—7月平均最高温度. 地理学报, 2009, 64(7): 879-887 [24] 刘禹, 张艳华, 蔡秋芳, 等. 基于树轮宽度重建的河南石人山地区1850年以来季节最低温度及20世纪增温. 地球环境学报, 2015, 6(6): 393-406 [25] 杨柳, 李静茹, 彭剑峰, 等. 1801年以来河南尧山地区油松高温变化及影响机制. 生态学报, 2021, 41(1): 79-91 [26] Shi J, Li J, Cook ER, et al. Growth response of Pinus tabuliformis to climate along an elevation gradient in the eastern Qinling Mountains, central China. Climate Research, 2012, 53: 157-167 [27] 崔佳月, 彭剑峰, 李静茹, 等. 嵩山地区油松人工林树轮宽度对气候因子的响应. 应用生态学报, 2021, 32(10): 3497-3504 [28] 叶永忠, 刘世荣. 河南宝天曼国家自然保护区科学考察集. 北京: 科学出版社, 2017 [29] Gazol A, Camarero JJ, Gutiérrez E, et al. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. Biogeography, 2015, 42: 1150-1162 [30] Motta R, Nola P, et al. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. Journal of Vegetation Science, 2001, 12: 219-230 [31] Schweingruber FH, Briffa KR, Nogler P. A tree-ring densitometric transect from Alaska to Labrador, International Journal of Biometeorology, 1993, 37: 151-169 [32] 陈振举, 孙雨, 何兴元, 等. 千山油松年轮宽度年表的建立及其与气候的关系. 应用生态学报, 2007, 18(10): 2191-2201 [33] 肖健宇, 张文艳, 牟玉梅, 等. 树木年轮揭示的东灵山主要树种间干旱耐受性差异. 应用生态学报, 2021, 32(10): 3487-3496 [34] 张晴, 于瑞德, 郑宏伟, 等. 天山东部不同海拔西伯利亚落叶松对气候变暖的响应分析. 植物研究, 2018, 38(1): 14-25 [35] 郭滨德, 张远东, 王晓春. 川西高原不同坡向云、冷杉树轮对快速升温的响应差异. 应用生态学报, 2016, 27(2): 354-364 [36] Lu XM, Huang R, Wang YF, et al. Summer temperature drives radial growth of alpine shrub willows on the northeastern Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 2016, 48: 461-468 [37] 乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应. 应用生态学报, 2019, 30(7): 2231-2240 [38] 乔雨宁, 任婧宇, 韦思瀚, 等. 黄土丘陵区5种主要乔灌树种光合生理生态特征. 水土保持研究, 2021, 28(6): 397-406 [39] 徐伟恒, 吴超, 杨磊, 等. 滇东北地区华山松与云南松的地表凋落物载量及火强度对比研究. 西南林业大学学报: 自然科学版, 2019, 39(5): 151-156 [40] Camarero JJ, Gazol A, Linares JC, et al. Differences in temperature sensitivity and drought recovery between natural stands and plantations of conifers are species-specific. Science of the Total Environment, 2021, 796: 148930 |