[1] Kikstra JS, Nicholls ZR, Smith CJ, et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: From emissions to global temperatures. Geoscientific Model Development, 2022, 15: 9075-9109 [2] Dixon RK, Solomon AM, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263: 185-190 [3] 徐影, 张冰, 周波涛, 等. 基于CMIP5模式的中国地区未来高温灾害风险预估. 气候变化研究进展, 2014, 10(4): 268-275 [4] 张强, 朱飙, 杨金虎, 等. 西北地区气候暖湿化趋势的新特征. 科学通报, 2022, 66(28-29): 3757-3771 [5] 施雅风, 沈永平, 胡汝骥, 等. 西北气候由暖干向暖湿转型的信号影响和前景初步探讨. 冰川冻土, 2002, 24(3): 219-226 [6] 徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 2007, 26(6): 1-10 [7] Malhi Y, Doughty C, Galbraith D. The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B, 2011, 366: 3225-3245 [8] 于健, 陈佳佳, 孟盛旺, 等. 长白山群落交错带长白松和鱼鳞云杉径向生长对气候变暖的响应. 应用生态学报, 2021, 32(1): 46-56 [9] 杨建伟, 梁宗锁, 韩蕊莲, 等. 不同干旱土壤条件下杨树的耗水规律及水分利用效率研究. 植物生态学报, 2004, 28(5): 630-636 [10] Martínez-Vilalta J, Poyatos R, Aguade D, et al. A new look at water transport regulation in plants. New Phyto-logist, 2014, 204: 105-115 [11] Wang F, Pan X, Gerlein-Safdi C, et al. Vegetation restoration in Northern China: A contrasted picture. Land Degradation & Development, 2020, 31: 669-676 [12] 刘敏, 毛子军, 厉悦, 等. 不同纬度阔叶红松林红松径向生长对气候因子的响应. 应用生态学报, 2016, 27(5): 1341-1352 [13] 李瑶, 曾小敏, 倪萍, 等. 树木年轮年内高分辨率稳定同位素记录: 方法、进展和展望. 应用生态学报, 2021, 32(10): 3743-3752 [14] 王庆伟, 于大炮, 代力民, 等. 全球气候变化下植物水分利用效率研究进展. 应用生态学报, 2010, 21(12): 3255-3265 [15] 张瑞波, 袁玉江, 魏文寿, 等. 西伯利亚落叶松树轮稳定碳同位素对气候的响应. 干旱区研究, 2012, 29(2): 328-334 [16] 贡艺, 陈新军, 李云凯, 等. 秘鲁外海茎柔鱼摄食洄游的稳定同位素研究. 应用生态学报, 2015, 26(9): 2874-2880 [17] 杨文慧, 焦磊, 买尔当·克依木, 等. 疏伐对黄土丘陵区刺槐林蒸腾的影响. 生态学报, 2021, 41(12): 4923-4934 [18] 郑淑霞, 上官周平. 黄土高原油松和刺槐叶片光合生理适应性比较. 应用生态学报, 2007, 18(1): 16-22 [19] Jump AS, Hunt JM, Penuelas J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology, 2006, 12: 2163-2174 [20] 孙守家, 李春友, 何春霞, 等. 基于树轮稳定碳同位素的张北杨树防护林退化原因解析. 应用生态学报, 2017, 28(7): 2119-2127 [21] Farquhar GD, O’Leary MH, Berry JA. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982, 9: 121-137 [22] Wang W, McDowell NG, Pennington S, et al. Tree growth, transpiration, and water-use efficiency between shoreline and upland red maple (Acer rubrum) trees in a coastal forest. Agricultural and Forest Meteorology, 2020, 295: 108163 [23] Nock CA, Baker PJ, Wanek W, et al. Long-term increases in intrinsic water-use efficiency do not lead to increased stem growth in a tropical monsoon forest in western Thailand. Global Change Biology, 2011, 17: 1049-1063 [24] Ma WT, Tcherkez G, Wang XM, et al. Accounting for mesophyll conductance substantially improves 13C-based estimates of intrinsic water-use efficiency. New Phytologist, 2021, 229: 1326-1338 [25] Saurer M, Siegwolf RTW, Schweingruber FH. Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Global Change Biology, 2004, 10: 2109-2120 [26] Camarero JJ, Gazol A, Sangüesa-Barreda G, et al. Coupled climate-forest growth shifts in the Chilean Patagonia are decoupled from trends in water-use efficiency. Agricultural and Forest Meteorology, 2018, 259: 222-231 [27] 朱海峰, 王丽丽, 邵雪梅, 等. 雪岭云杉树轮宽度对气候变化的响应. 地理学报, 2004, 59(6): 863-870 [28] 周佳, 孟平, 张劲松, 等. 河南民权与陕西白水刺槐径向生长与水分利用效率对气候响应的差异. 林业科学研究, 2021, 34(6): 1-8 [29] Salzer MW, Hughes MK, Bunn AG, et al. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 20348-20353 [30] Zhang T, Yuan Y, Wei W, et al. A tree-ring based precipitation reconstruction for the Mohe region in the northern Greater Higgnan Mountains, China, since AD 1724. Quaternary Research, 2014, 82: 14-21 [31] Vose JM, Swank WT. Effects of long-term drought on the hydrology and growth of a white pine plantation in the southern Appalachians. Forest Ecology and Management, 1994, 64: 25-39 [32] 蔺甲, 袁玉江, 魏文寿, 等. 博州中东部树轮宽度年表特征及其气候响应. 沙漠与绿洲气象, 2013, 7(1): 39-46 [33] Laurent M, Antoine N, Joël G. Effects of different thinning intensities on drought response in Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 2003, 183: 47-60 [34] Naulier M, Savard MM, Bégin C, et al. A millennial summer temperature reconstruction for northeastern Canada using oxygen isotopes in subfossil trees. Climate of the Past Discussions, 2015, 11: 521-553 [35] Brienen RJW, Wanek W, Hietz P. Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees, 2011, 25: 103-113 [36] Battipaglia G, De Micco V, Brand WA. Drought impact on water use efficiency and intra-annual density fluctuations in Erica arborea on Elba (Italy). Plant, Cell and Environment, 2014, 37: 382-391 [37] Peters W, van der Velde IR, van Schaik E, et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nature Geoscience, 2018, 11: 744-748 [38] Elisabet MS, Isabel DL, Emilia GM, et al. Increased water-use efficiency translates into contrasting growth patterns of Scots pine and sessile oak at their southern distribution limits. Global Change Biology, 2018, 24: 1012-1028 [39] Lavergne A, Voelker S, Csank A, et al. Historical changes in the stomatal limitation of photosynthesis: Empirical support for an optimality principle. New Phytologist, 2020, 225: 2484-2497 [40] Sun S, Zhang J, Yin C, et al. Stable isotopes reveal differences in climate sensitivity and physiological responses between dieback and healthy trees in a shelter forest. Agricultural and Forest Meteorology, 2022, 325: 109090 [41] Lévesque M, Siegwolf R, Saurer M, et al. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions.New Phytologist, 2014, 203: 94-109 [42] Will RE, Wilson SM, Zou CB, et al. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytologist, 2013, 200: 366-374 |